Current Transducers HAC 100 ... 800-S For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). ### **Preliminary** | Electr | ical data | | |--|--|--| | Primary nomin
r.m.s. current
$\mathbf{I}_{_{\mathrm{PN}}}(A)$ | al Primary current
measuring range
I _P (A) | Туре | | 100
200
300
400
600
800 | ±300
±600
±900
±900
±1800
±1800 | HAC 100-S
HAC 200-S
HAC 300-S
HAC 400-S
HAC 600-S
HAC 800-S | | $egin{array}{l} oldsymbol{V}_{c} \\ oldsymbol{I}_{c} \\ oldsymbol{V}_{d} \\ oldsymbol{R}_{lS} \\ oldsymbol{V}_{OUT} \\ oldsymbol{R}_{OUT} \\ oldsymbol{R}_{L} \end{array}$ | Supply voltage (\pm 5 %) Current consumption HAC 100-S 400 HAC 600-S 800 R.m.s. voltage for AC isolation test, 50/60 H Isolation resistance @ 500 VDC Output voltage @ \pm I _{PN} , R _L = 10 k Ω , T _A = 25°0 Output internal resistance Load resistance | 0-S < ± 25 mA
Iz, 1 mn 2.5 kV
> 1000 MΩ | | Acc | uracy - Dynamic performance data | | | |------------------------------------|--|-------------|----------------------| | X | Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$ (without offset) | < ± 1 | % of I _{PN} | | e l | Linearity (0 ± I _{PN}) | < ± 1 | % of I _{PN} | | V _{OE}
V _{OH} | Electrical offset voltage, T _A = 25°C | $< \pm 30$ | mΫ | | V _{OH} | Hysteresis offset voltage $@ \mathbf{I}_{P} = 0;$ | | | | | after an excursion of 1 x I _{PN} | $< \pm 35$ | m۷ | | \mathbf{V}_{OT} | Thermal drift of V _{OE} | < ± 1 | mV/K | | TC e | Thermal drift (% of reading) | $< \pm 0.1$ | %/K | | t, | Response time @ 90% of I_P | < 7 | μs | | f | Frequency bandwidth (- 3 dB) ¹⁾ | DC 50 | kHz | | - 10 + 80 | °C | |-----------|-----------| | - 15 + 85 | °C | | 70 | g | | | - 15 + 85 | Notes: EN50178 approval pending # $I_{PN} = 100 ... 800 A$ #### **Features** - Hall effect measuring principle - Galvanic isolation between primary and secondary circuit - Isolation voltage 2500 V - Low power consumption - Extended measuring range (3 x I_{PN}) #### **Advantages** - Easy mounting - Small size and space saving - Only one design for wide current ratings range - High immunity to external interference. ### **Applications** - AC variable speed drives - Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. 010118/2 ¹⁾ Derating is needed to avoid excessive core heating at high frequency. # HAC 100 ... 800-S **Terminal Identification** 1.....+Vcc 2.....-Vcc 3.....Output 4.....0V TOLERANCE : +/-0.5 mm UNLESS OTHERWISE SPECIFIED UNIT: mm