

Current Transducers HAC 100 ... 800-S

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Preliminary

Electr	ical data	
Primary nomin r.m.s. current $\mathbf{I}_{_{\mathrm{PN}}}(A)$	al Primary current measuring range I _P (A)	Туре
100 200 300 400 600 800	±300 ±600 ±900 ±900 ±1800 ±1800	HAC 100-S HAC 200-S HAC 300-S HAC 400-S HAC 600-S HAC 800-S
$egin{array}{l} oldsymbol{V}_{c} \\ oldsymbol{I}_{c} \\ oldsymbol{V}_{d} \\ oldsymbol{R}_{lS} \\ oldsymbol{V}_{OUT} \\ oldsymbol{R}_{OUT} \\ oldsymbol{R}_{L} \end{array}$	Supply voltage (\pm 5 %) Current consumption HAC 100-S 400 HAC 600-S 800 R.m.s. voltage for AC isolation test, 50/60 H Isolation resistance @ 500 VDC Output voltage @ \pm I _{PN} , R _L = 10 k Ω , T _A = 25°0 Output internal resistance Load resistance	0-S < ± 25 mA Iz, 1 mn 2.5 kV > 1000 MΩ

Acc	uracy - Dynamic performance data		
X	Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$ (without offset)	< ± 1	% of I _{PN}
e l	Linearity (0 ± I _{PN})	< ± 1	% of I _{PN}
V _{OE} V _{OH}	Electrical offset voltage, T _A = 25°C	$< \pm 30$	mΫ
V _{OH}	Hysteresis offset voltage $@ \mathbf{I}_{P} = 0;$		
	after an excursion of 1 x I _{PN}	$< \pm 35$	m۷
\mathbf{V}_{OT}	Thermal drift of V _{OE}	< ± 1	mV/K
TC e	Thermal drift (% of reading)	$< \pm 0.1$	%/K
t,	Response time @ 90% of I_P	< 7	μs
f	Frequency bandwidth (- 3 dB) ¹⁾	DC 50	kHz

- 10 + 80	°C
- 15 + 85	°C
70	g
	- 15 + 85

Notes: EN50178 approval pending

$I_{PN} = 100 ... 800 A$

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 2500 V
- Low power consumption
- Extended measuring range (3 x I_{PN})

Advantages

- Easy mounting
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

010118/2

¹⁾ Derating is needed to avoid excessive core heating at high frequency.

HAC 100 ... 800-S

Terminal Identification

1.....+Vcc

2.....-Vcc

3.....Output

4.....0V

TOLERANCE : +/-0.5 mm UNLESS OTHERWISE SPECIFIED

UNIT: mm