

May 2002 Revised May 2002

74LVXZ161284

Low Voltage IEEE 161284 Translating Transceiver with Power-Up Protection

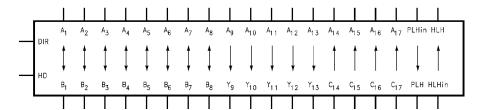
General Description

The LVXZ161284 contains eight bidirectional data buffers and eleven control/status buffers to implement a full IEEE 1284 compliant interface. The device supports the IEEE 1284 standard and is intended to be used in an Extended Capabilities Port mode (ECP). The pinout allows for easy connection from the Peripheral (A-side) to the Host (cable side).

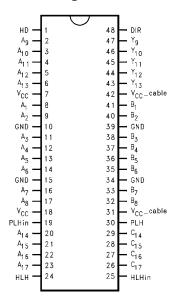
Outputs on the cable side can be configured to be either open drain or high drive (\pm 14 mA) and are connected to a separate power supply pin (V_{CC-Cable}) that allows these outputs to be driven by a higher supply voltage than the A-side. The pull-up and pull-down series termination resistance of these outputs on the cable side is optimized to drive an external cable. In addition, the C inputs and the B and Y outputs on the cable side contain internal pull-up resistors connected to the V_{CC-Cable} supply to provide proper input termination and pull-ups for open drain output mode.

Outputs on the Peripheral side are standard low-drive CMOS outputs designed to interface with 3V logic. The DIR input controls data flow on the A_1-A_8/B_1-B_8 transceiver pins.

This device also has an added power-up protection feature which forces the Y outputs $(Y_9 - Y_{13})$ to a high state after power-on until one of the associated inputs $(A_9 - A_{13})$ goes HIGH. When an associated input $(A_9 - A_{13})$ goes HIGH, all Y outputs $(Y_9 - Y_{13})$ are activated.


Features

- Supports IEEE 1284 Level 1 and Level 2 signaling standards for bidirectional parallel communications between personal computers and printing peripherals
- Translation capability allows outputs on the cable side to interface with 5V signals
- All inputs have hysteresis to provide noise margin
- B and Y output resistance optimized to drive external cable
- B and Y outputs in high impedance mode during power down
- \blacksquare C inputs and B, Y outputs on cable side have internal 1.4 kΩ pull-up resistors
- Flow-through pin configuration allows easy interface between the "Peripheral and Host"
- Replaces the function of two (2) 74ACT1284 devices
- Power-up protection prevents errors when the printer is powered on but no valid signal is at the input pins (A₉ - A₁₃).

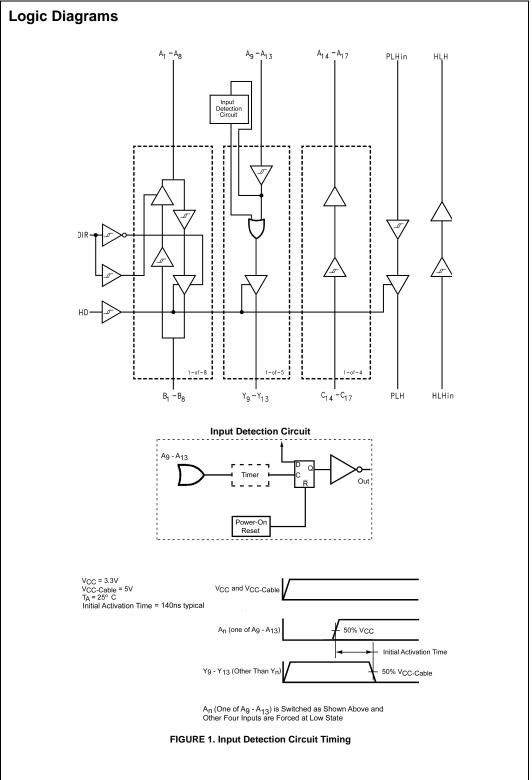

Ordering Code

Order Number	Package Number	Package Description
74LVXZ161284MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [RAIL]
74LVXZ161284MEX	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [TAPE and REEL]
74LVXZ161284MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [RAIL]
74LVXZ161284MTX	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [TAPE and REEL]

Logic Symbol

Connection Diagram

Pin Descriptions


Pin Names	Description			
HD	High Drive Enable Input (Active HIGH)			
DIR	Direction Control Input			
A ₁ -A ₈	Inputs or Outputs			
B ₁ -B ₈	Inputs or Outputs			
A ₉ -A ₁₃	Inputs			
Y ₉ -Y ₁₃	Outputs			
A ₁₄ -A ₁₇	Outputs			
C ₁₄ -C ₁₇	Inputs			
PLH _{IN}	Peripheral Logic HIGH Input			
PLH	Peripheral Logic HIGH Output			
HLH _{IN}	Host Logic HIGH Input			
HLH	Host Logic HIGH Output			

Truth Table

Inp	uts	Outputs			
DIR	HD				
L	L	B ₁ -B ₈ Data to A ₁ -A ₈ , and			
		A ₉ -A ₁₃ Data to Y ₉ -Y ₁₃ (Note 1)			
		C ₁₄ -C ₁₇ Data to A ₁₄ -A ₁₇			
		PLH Open Drain Mode			
L	Н	B ₁ -B ₈ Data to A ₁ -A ₈ , and			
		A ₉ -A ₁₃ Data to Y ₉ -Y ₁₃			
		C ₁₄ -C ₁₇ Data to A ₁₄ -A ₁₇			
Н	L	A ₁ -A ₈ Data to B ₁ -B ₈ (Note 2)			
		A ₉ -A ₁₃ Data to Y ₉ -Y ₁₃ (Note 1)			
		C ₁₄ -C ₁₇ Data to A ₁₄ -A ₁₇			
		PLH Open Drain Mode			
Н	Н	A ₁ -A ₈ Data to B ₁ -B ₈			
		A ₉ -A ₁₃ Data to Y ₉ -Y ₁₃			
		C ₁₄ -C ₁₇ Data to A ₁₄ -A ₁₇			

Note 1: Y_9 – Y_{13} Open Drain Outputs with 1.4 k Ω pullups

Note 2: $\mathrm{B_1-\!B_8}$ Open Drain Outputs with 1.4 $\mathrm{k}\Omega$ pullups

Absolute Maximum Ratings(Note 3) **Recommended Operating Conditions** Supply Voltage

-0.5V to +4.6V V_{CC}

-0.5V to +7.0V V_{CC—Cable} V_{CC—Cable} Must Be ≥ V_{CC}

Input Voltage (V_I)—(Note 4)

A₁-A₁₃, PLH_{IN}, DIR, HD -0.5V to $V_{CC} + 0.5V$ B₁-B₈, C₁₄-C₁₇, HLH_{IN} -0.5V to +5.5V (DC)

 B_1-B_8 , $C_{14}-C_{17}$, HLH_{IN} -2.0V to +7.0V* *40 ns Transient

Output Voltage (V_O)

-0.5V to V_{CC} +0.5V A_1 - A_8 , A_{14} - A_{17} , HLH B₁-B₈, Y₉-Y₁₃, PLH -0.5V to +5.5V (DC) -2.0V to +7.0V* B₁-B₈, Y₉-Y₁₃, PLH

*40 ns Transient

DC Output Current (I_O)

A₁-A₈, HLH ±25 mA B_1-B_8, Y_9-Y_{13} ±50 mA PLH (Output LOW) 84 mA PLH (Output HIGH) -50 mA

Input Diode Current (I $_{\rm IK}$)—(Note 4) DIR, HD, A $_9$ -A $_{13}$, PLH, HLH, C $_{14}$ -C $_{17}$ -20 mA

Output Diode Current (I_{OK})

A₁-A₈, A₁₄-A₁₇, HLH ±50 mA B₁-B₈, Y₉-Y₁₃, PLH -50 mA

DC Continuous $V_{\mbox{\footnotesize CC}}$ or Ground

±200 mA

Storage Temperature -65°C to +150°C

ESD

Human Body Model 4000V

Machine Model 200V Charged Device Model 2000V Supply Voltage

 V_{CC} 3.0V to 3.6V 3.0V to 5.5V DC Input Voltage (V_I) 0V to V_{CC} Open Drain Voltage (V_O) 0V to 5.5V Operating Temperature (T_A) -40°C to +85°C

Note 3: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Fairchild does not recommend operation outside the databook specifications.

Note 4: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		V _{CC} (V)	V _{CC—Cable} (V)	T _A = 0°C to +70°C	T _A = −40°C to +85°C	Units	Conditions
					Guarante	ed Limits		
V _{IK}	Input Clamp		3.0	3.0	-1.2	-1.2	V	$I_i = -18 \text{ mA}$
	Diode Voltage							
V _{IH}	Minimum	A _n , B _n , PLH _{IN} , DIR, HD	3.0-3.6	3.0-5.5	2.0	2.0		
	HIGH Level	C _n	3.0-3.6	3.0-5.5	2.3	2.3	V	
	Input Voltage	HLH _{IN}	3.0-3.6	3.0-5.5	2.6	2.6		
V _{IL}	Maximum	A _n , B _n , PLH _{IN} , DIR, HD	3.0-3.6	3.0-5.5	0.8	0.8		
	LOW Level	C _n	3.0-3.6	3.0-5.5	0.8	0.8	V	
	Input Voltage	HLH _{IN}	3.0-3.6	3.0-5.5	1.6	1.6		
ΔV_{T}	Minimum Input	A _n , B _n , PLH _{IN} , DIR, HD	3.3	5.0	0.4	0.4		$V_T^+ - V_T^-$
	Hysteresis	C _n	3.3	5.0	0.8	0.8	V	$V_T^+ - V_T^-$
		HLH _{IN}	3.3	5.0	0.2	0.2		$V_T^+ - V_T^-$
V _{OH}	Minimum HIGH	A _n , HLH	3.0	3.0	2.8	2.8		$I_{OH} = -50 \mu A$
	Level Output		3.0	3.0	2.4	2.4		$I_{OH} = -4 \text{ mA}$
	Voltage	B _n , Y _n	3.0	3.0	2.0	2.0	V	$I_{OH} = -14 \text{ mA}$
		B _n , Y _n	3.0	4.5	2.23	2.23	Ī	$I_{OH} = -14 \text{ mA}$
		PLH	3.15	3.15	3.1	3.1	Ī	$I_{OH} = -500 \mu A$

DC Electrical Characteristics (Continued)

				T	$T_A = 0^{\circ}C$	T _A = -40°C			
Symbol	Para	ameter	V _{CC} (V)	V _{CC—Cable}	to +70°C	to +85°C	Units	Conditions	
			(۷)	(V)	Guarante	Guaranteed Limits		 -	
V _{OL}	Maximum LOW	A _n , HLH	3.0	3.0	0.2	0.2		I _{OL} = 50 μA	
	Level Output		3.0	3.0	0.4	0.4		$I_{OL} = 4 \text{ mA}$	
	Voltage	B _n , Y _n	3.0	3.0	0.8	0.8	V	I _{OL} = 14 mA	
		B _n , Y _n	3.0	4.5	0.77	0.77	V	$I_{OL} = 14 \text{ mA}$	
		PLH	3.0	3.0	0.85	0.95	1	$I_{OL} = 84 \text{ mA}$	
		PLH	3.0	4.5	0.8	0.9	1	$I_{OL} = 84 \text{ mA}$	
R _D	Maximum Output	B ₁ - B ₈ , Y ₉ -Y ₁₃	3.3	3.3	60	60		(Note 5)(Note 7)	
	Impedance		3.3	5.0	55	55	Ω	(Note 5)(Note 7)	
	Minimum Output	B ₁ - B ₈ , Y ₉ - Y ₁₃	3.3	3.3	30	30	22	(Note E)/Note 7)	
	Impedance		3.3	5.0	35	35		(Note 5)(Note 7)	
R _P	Maximum Pull-Up	B ₁ - B ₈ , Y ₉ - Y _{13,}	3.3	3.3	1650	1650			
	Resistance	C ₁₄ - C ₁₇	3.3	5.0	1650	1650	Ω		
	Minimum Pull-Up	B ₁ -B ₈ , Y ₉ - Y ₁₃	3.3	3.3	1150	1150			
	Resistance	C ₁₄ - C ₁₇	3.3	5.0	1150	1150	Ω		
I _{IH}	Maximum Input	A ₉ - A ₁₃ , PLH _{IN} ,			4.0	4.0			
	Current in	HD, DIR, HLH _{IN}	3.6	3.6	1.0	1.0		$V_I = 3.6V$	
	HIGH State	C ₁₄ - C ₁₇	3.6	3.6	50.0	50.0	μΑ	V _I = 3.6V	
		C ₁₄ -C ₁₇	3.6	5.5	100	100	1	V _I = 5.5V	
I _{IL}	Maximum Input	A ₉ - A ₁₃ , PLH _{IN} ,	0.0	0.0	4.0	-1.0	_	1/ 0.01/	
	Current in	HD, DIR, HLH _{IN}	3.6	3.6	-1.0	-1.0	μΑ	$V_I = 0.0V$	
	LOW State	C ₁₄ - C ₁₇	3.6	3.6	-3.5	-3.5			
		C ₁₄ - C ₁₇	3.6	5.5	-5.0	-5.0	mA	$V_I = 0.0V$	
I _{OZH}	Maximum Output	A ₁ - A ₈	3.6	3.6	20	20		V _O = 3.6V	
	Disable Current	B ₁ - B ₈	3.6	3.6	50	50	μΑ	V _O = 3.6V	
	(HIGH)	B ₁ - B ₈	3.6	5.5	100	100	1	V _O = 5.5V	
I _{OZL}	Maximum	A ₁ - A ₈	3.6	3.6	-20	-20	μА		
	Output Disable	B ₁ - B ₈	3.6	3.6	-3.5	-3.5		$V_0 = 0.0V$	
	Current (LOW)	B ₁ - B ₈	3.6	5.5	-5.0	-5.0	mA		
I _{OZPU}	Maximum Power-Up	Y ₉ - Y ₁₃	0 to 1.5	0 to 1.5	350	350	μА	V _O = 5.5V	
	Disable Current	B ₁ - B ₈	(Note 8)	(Note 8)	-5	-5	mA	V _O = 0.0V	
I _{OZPD}	Maximum Power-Down	Y ₉ - Y ₁₃	0 to 1.5	0 to 1.5	350	350	μА	V _O = 5.5V	
	Disable Current	B ₁ - B ₈	(Note 8)	(Note 8)	-5	-5	mA	$V_0 = 0.0V$	
I _{OFF}	Power Down	B ₁ - B ₈ , Y ₉ - Y ₁₃ ,	0.0	0.0	400	400		\/ 5.5\/	
	Output Leakage	PLH	0.0	0.0	100	100	μΑ	$V_0 = 5.5V$	
I _{OFF}	Power Down	0 0 11111	0.0	0.0	400	400	_)/ F 5\/	
	Input Leakage	C ₁₄ –C ₁₇ , HLH _{IN}	0.0	0.0	100	100	μΑ	$V_I = 5.5V$	
I _{OFF} —ICC	Power Down		0.0	0.0	050	050	_	(Nata 0)	
	Leakage to V _{CC}		0.0	0.0	250	250	μΑ	(Note 6)	
I _{OFF} —ICC2	Power Down Leakage		1				<u> </u>		
	to V _{CC—Cable}		0.0	0.0	250	250	μА	(Note 6)	
I _{CC}	Maximum Supply		3.6	3.6	45	45	mA	$V_I = V_{CC}$ or GND	
			1	1		I	1		

Note 5: Output impedance is measured with the output active LOW and active HIGH (HD = HIGH).

Note 6: Power-down leakage to V_{CC} or V_{CC—Cable} is tested by simultaneously forcing all pins on the cable-side (B₁–B₈, Y₉–Y₁₃, PLH, C₁₄–C₁₇ and HLH_{IN}) to 5.5V and measuring the resulting I_{CC} or I_{CC—Cable}.

 $\textbf{Note 7:} \ \textbf{This parameter is guaranteed but not tested, characterized only.}$

Note 8: Connect all V_{CC} pins and $V_{CC\text{-}Cable}$ pins when forcing voltage applied, DIR = HD = 0V.

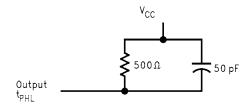
AC Electrical Characteristics

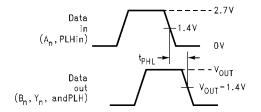
		T _A = 0°C	to +70°C	T _A = -40	Units	Figure Number	
	_	V _{CC} = 3	.0V-3.6V	V _{CC} = 3			
Symbol	Parameter	V _{CC—Cable}	= 3.0V-5.5V	V _{CC—Cable}			
		Min Max Min Max					
t _{PHL}	A ₁ -A ₈ to B ₁ -B ₈	2.0	40.0	2.0	44.0	ns	Figure 2
t _{PLH}	A ₁ -A ₈ to B ₁ -B ₈	2.0	40.0	2.0	44.0	ns	Figure 3
t _{PHL}	B ₁ -B ₈ to A ₁ -A ₈	2.0	40.0	2.0	44.0	ns	Figure 4
t _{PLH}	B ₁ -B ₈ to A ₁ -A ₈	2.0	40.0	2.0	44.0	ns	Figure 4
t _{PHL}	A ₉ -A ₁₃ to Y ₉ -Y ₁₃	2.0	40.0	2.0	44.0	ns	Figure 2
t _{PLH}	A ₉ -A ₁₃ to Y ₉ -Y ₁₃	2.0	40.0	2.0	44.0	ns	Figure 3
t _{PHL}	C ₁₄ -C ₁₇ to A ₁₄ -A ₁₇	2.0	40.0	2.0	44.0	ns	Figure 4
t _{PLH}	C ₁₄ -C ₁₇ to A ₁₄ -A ₁₇	2.0	40.0	2.0	44.0	ns	Figure 4
t _{SKEW}	LH-LH or HL-HL		10.0		12.0	ns	(Note 10)
t _{PHL}	PLH _{IN} to PLH	2.0	40.0	2.0	44.0	ns	Figure 2
t _{PLH}	PLH _{IN} to PLH	2.0	40.0	2.0	44.0	ns	Figure 3
t _{PHL}	HLH _{IN} to HLH	2.0	40.0	2.0	44.0	ns	Figure 4
t _{PLH}	HLH _{IN} to HLH	2.0	40.0	2.0	44.0	ns	Figure 4
t _{PHZ}	Output Disable Time	2.0	15.0	2.0	18.0	ns	Figure 8
t_{PLZ}	DIR to A ₁ -A ₈	2.0	15.0	2.0	18.0		
t _{PZH}	Output Enable Time	2.0	50.0	2.0	50.0		Figure 9
t_{PZL}	DIR to A ₁ -A ₈	2.0	50.0	2.0	50.0	ns	
t _{PHZ}	Output Disable Time	2.0	50.0	2.0	50.0	+ +	Firm 40
t_{PLZ}	DIR to B ₁ -B ₈	2.0	50.0	2.0	50.0	ns	Figure 10
t _{DEN}	Output Enable Time	2.0	25.0	2.0	28.0		
	HD to B ₁ -B ₈ , Y ₉ -Y ₁₃	2.0	25.0	2.0	28.0	ns	Figure 3
t _{pDIS}	Output Disable Time	2.0	25.0	2.0	28.0		Figure 3
	HD to B ₁ -B ₈ , Y ₉ -Y ₁₃	2.0	25.0	2.0	28.0	ns	
t _{pEN} -t _{pDIS}	Output Enable-		10.0		12.0	ns	
p= p=	Output Disable						
t _{SLEW}	Output Slew Rate						
t _{PLH}	B ₁ -B ₈ , Y ₉ -Y ₁₃	0.05	0.40	0.05	0.40	V/ns	Figure 6
t _{PHL}		0.05	0.40	0.05	0.40		Figure 5
t _r , t _f	t _{RISE} and t _{FALL}		120	1	120		Figure 7
•	B ₁ -B ₈ (Note 9),		120		120	ns	(Note 11)
	Y ₉ –Y ₁₃ (Note 9)						

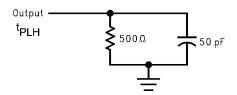
Note 9: Open Drain

 $\textbf{Note 10:} \ t_{\text{SKEW}} \ \text{is measured for common edge output transitions and compares the measured propagation delay for a given path type:} \\$

- (i) A_1 - A_8 to B_1 - B_8 , A_9 - A_{13} to Y_9 - Y_{13}
- (ii) B₁-B₈ to A₁-A₈
- (iii) C₁₄-C₁₇ to A₁₄-A₁₇


Note 11: This parameter is guaranteed but not tested, characterized only.


Capacitance


Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	3	pF	$V_{CC} = 0.0V \text{ (HD, DIR, A}_9-A_{13}, C_{14}-C_{17}, PLH_{IN} \text{ and HLH}_{IN})$
Cuo (Note 12)	I/O Pin Canacitance	5	nF	V ₀₀ = 3 3V

 ${\sf C_{I/O}}$ (Note 12) I/O Pin Capacitance 5 pF ${\sf V_{CC}}=3$ **Note 12:** ${\sf C_{I/O}}$ is measured at frequency = 1 MHz, per MIL-STD-883B, Method 3012

AC Loading and Waveforms Pulse Generator for all pulses: Rate \leq 1.0 MHz; $Z_O \leq 50\Omega$; $t_f \leq$ 2.5 ns, $t_r \leq$ 2.5 ns.

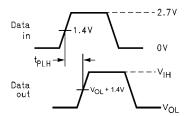
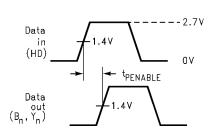



FIGURE 2. Port A to B and A to Y Propagation Delay Waveforms

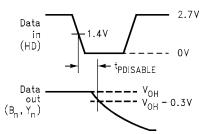
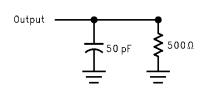



FIGURE 3. Port A to B and A to Y Output Waveforms

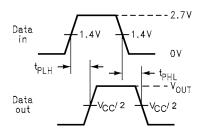
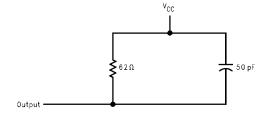



FIGURE 4. Port B to A, C to A and HLHin to HLH Propagation Delay Waveforms

AC Loading and Waveforms (Continued)

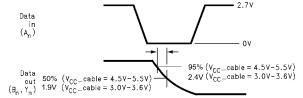


FIGURE 5. Port A to B and A to Y HL Slew Test Load and Waveforms

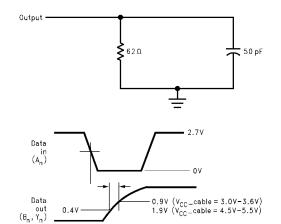
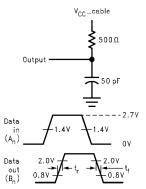



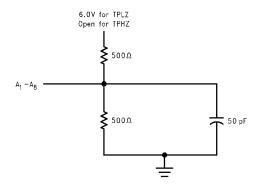
FIGURE 6. Port A to B and A to Y LH Slew Test Load and Waveforms

AC Loading and Waveforms (Continued)

 $t_{\rm r} = {\sf Output} \; {\sf Rise} \; {\sf Time}, \; {\sf Open} \; {\sf Drain}$

t_f = Output Fall Time, Open Drain

FIGURE 7. Ports A to B and A to Y Rise and Fall Test Load and Waveforms for Open Drain Outputs



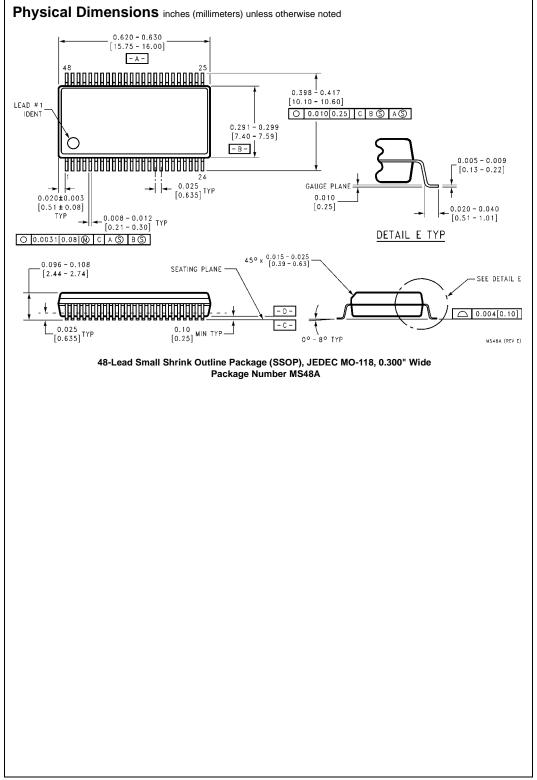
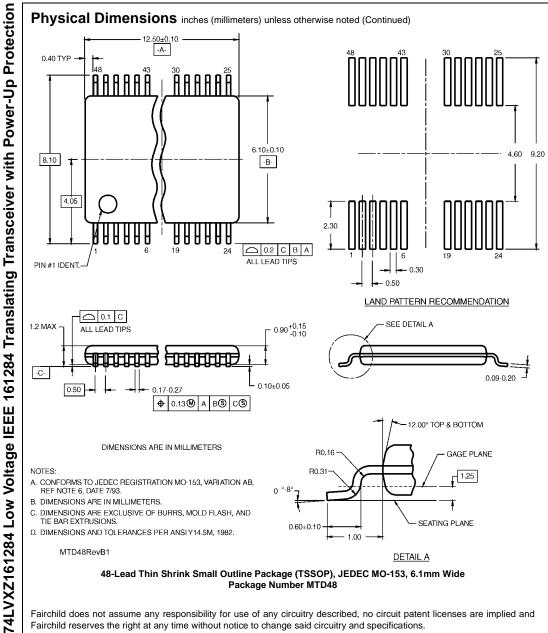



FIGURE 8. t_{PHZ} and t_{PLZ} Test Load and Waveforms, DIR to $\rm A_1\text{--}A_8$

Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com