PowerManager^m ### **General Description** The AAT3526/7/8 PowerManager™ products are members of AATI's Total Power Management IC™ (TPMIC™) product family. These microprocessor reset circuits are ideal for monitoring voltage supplies in portable systems, where extended battery life is critical. They provide a low cost, reliable solution by eliminating external components. AAT3526/7/8 products operate by monitoring the system power supply voltage. When the input voltage drops below a fixed threshold, the device asserts a reset signal for a minimum of 150ms after V_{CC} has risen back above the fixed threshold. They are guaranteed to operate down to 1.2V and designed to ignore fast line transients appearing on V_{CC}. The AAT3526/7/8 series is available with three output stage versions: AAT3526 push-pull active low output, AAT3527 push-pull active high output and AAT3528 open drain active low output. The quiescent supply current is extremely low, typically 1µA, making this device ideal for portable battery operated equipment. The AAT3526/7/8 are available in a 4 pin SOT143 package and are specified over -40° to 85°C operating temperature range. #### **Features** - 1.2V to 5.5V Input voltage range - Operation down to 1.2V - Extremely low quiescent current: less than 2µA - High accuracy detection threshold: ±1.5% - Monitor Power Supply Voltages - Fixed thresholds from 2.2V to 4.6V - Minimum 150ms reset pulse width with fast delay time <20µs - Debounced Manual Reset Input - Available output configurations: - · Open-drain output - · CMOS active high output - CMOS active low output - Temp range -40 to 85°C - 4 pin SOT143 package ### **Applications** - · Notebook Computers - Cell Phones - Portable Electronics - Embedded Systems - · Intelligent Instruments ### **Typical Application** # **MicroPower Supervisory Circuit with Manual Reset** # **Pin Descriptions** ### AAT3526, 3527, 3528 (SOT143) | Pin # | Symbol | Function | |-------|--------------------------------|--| | 1 | GND | Ground connection | | 2 | RESET
(AAT3527) | RESET output remains high while V_{CC} is below the reset threshold and remains so for a minimum of 150ms after V_{CC} raises above the reset threshold. | | 2 | RESET
(AAT3526,
AAT3528) | $\overline{\text{RESET}}$ output remains low while V_{CC} is below the reset threshold and remains so for a minimum of 150ms after V_{CC} raises above the reset threshold | | 3 | MR | Manual Reset active low input. A logic low signal on \overline{MR} asserts a reset condition. Asserted reset continues as long as \overline{MR} is low and for a minimum of 150ms after \overline{MR} returns high | | 4 | Vcc | Supply Voltage (+1.2V to +5.5V) | # **Part Number Descriptions** | Part Number | Output Type | |-------------|---| | AAT3526 | Reset Output Push Pull Active Low with Delay | | AAT3527 | Reset Output Push Pull Active High with Delay | | AAT3528 | Reset Output Open Drain Active Low with Delay | # **Pin Configuration** ## **AAT3526/7/8** # MicroPower Supervisory Circuit with Manual Reset # **Absolute Maximum Ratings** (T_A=25°C unless otherwise noted) | Symbol | Description | Value | Units | |------------------------------------|--|------------------------------|-------| | V _{CC} | V _{CC} to GND | -0.3 to 5.5 | V | | V _{MR} | MR to GND | -0.3 to V _{CC} +0.3 | V | | V _{RESET} | RESET to GND (Push-Pull Output) | -0.3 to V _{CC} +0.3 | V | | * RESET | RESET to GND (Open Drain Output) | -0.3 to 5.5 | V | | I _{VCC} , I _{MR} | Maximum Continuous Input Current | 20 | mA | | I _{RESET} | RESET/RESET Current | 20 | mA | | dVcc/dt | Rate of rise of V _{CC} | 100 | V/µs | | T _J | Operating Junction Temperature Range | -40 to 150 | °C | | T _{LEAD} | Maximum Soldering Temperature (at Leads) for 10s | 300 | °C | Note: Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum rating should be applied at any one time. ### **Thermal Information** | Symbol | Description | Value | Units | | |---------------|--|-------|-------|--| | Θ_{JA} | Maximum Thermal Resistance (SOT143) ¹ | 200 | °C/W | | | P_{D} | Maximum Power Dissipation (SOT143) ¹ | 320 | mW | | Note 1: Mounted on an FR4 board. # MicroPower Supervisory Circuit with Manual Reset | Symbol | Description | Conditions | Min | Тур | Max | Units | | |---------------------------|--------------------------------------|--|-----------------------|----------|-----------------------|--------|--| | V _{CC} | On a mation Maltana | $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ | 1.0 | | 5.5 | V | | | | Operation Voltage | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ | 1.2 | | 5.5 | V | | | I Ouis | Quiescent Current | V _{CC} = 5.5V | | 1.05 | 3 | | | | I_Q | Quiescent Current | V _{CC} = 3V | | 0.85 | 2 | μA | | | \/ | RESET Threshold (Table 1) | T _A = 25°C | V _{TH} -1.5% | V_{TH} | V _{TH} +1.5% | \
\ | | | V_{TH} | | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | V _{TH} -2.5% | V_{TH} | V _{TH} +2.5% | \ \ \ | | | $\Delta V_{TH}/^{\circ}C$ | RESET Threshold Tempco | | | 40 | | ppm/°C | | | t _P | RESET Propagation Delay | $V_{CC} = V_{TH}$ to $(V_{TH} - 100 \text{mV})$ | | 15 | | μs | | | t _{RDY} | RESET Active Timeout Period | | 150 | 250 | 400 | ms | | | t_{MR} | MR Minimum Pulse Width | | 10 | | | μs | | | MRGI | MR Glitch Immunity | | | 100 | | ns | | | t _{MD} | MR to Reset Propagation Delay | | | 0.5 | | μs | | | \/ | MR Input Threshold | $V_{CC} = V_{TH(MAX)}, V_{TH} \ge 4.38V$ | 2.3 | | | V | | | V_{IH} | | $V_{CC} = V_{TH(MAX)}, V_{TH} < 4.38V$ | $0.7 \times V_{CC}$ | | | V | | | \/ | MR Input Threshold | $V_{CC} = V_{TH(MAX)}, V_{TH} \ge 4.38V$ | | | 0.8 | V | | | V_{IL} | | $V_{CC} = V_{TH(MAX)}, V_{TH} < 4.38V$ | | | $0.25 \times V_{CC}$ | | | | R_{MR} | MR Pull-Up Resistance | | 10 | 20 | 30 | kΩ | | | | RESET Low Output Voltage | I _{SINK} =1.6mA, V _{CC} > 2.1V,
RESET asserted | | | 0.3 | V | | | V _{OL} | AAT3526, AAT3528 | I _{SINK} =100μA, V _{CC} >1.2V,
RESET asserted | | | 0.4 | V | | | V _{OH} | RESET High Output Voltage
AAT3526 | I _{SOURCE} = 800 μA | V _{CC} -1.5 | | | V | | | V _{OL} | RESET Low Output Voltage
AAT3527 | I _{SINK} =1.2mA, V _{CC} > 1.2V,
RESET not asserted | | | 0.3 | - V | | | | | I _{SINK} = 3.2mA, V _{CC} > 4.5V,
RESET not asserted | | | 0.4 | | | | V _{OH} | RESET High Output Voltage | I_{SOURCE} = 500 μ A, V_{CC} > 2.1V, RESET asserted | 0.8V _{CC} | | | V | | | | AAT3527 | I_{SOURCE} = 50 μ A, V_{CC} > 1.2V, RESET asserted | 0.8V _{CC} | | | V | | | I _{DOFF} | RESET leakage current, AAT3528 | $V_{CC} > V_{TH}$ | | | 1 | μA | | # **Typical Characteristics** # Normalized Reset Threshold vs. Temperature Power-Up Reset Timeout vs. Temperature Power-Down Reset Propagation Delay vs. Temperature Maximum Transient Duration # **Functional Block Diagram** ### **Functional Description** #### General During start-up, the reset pin on a microprocessor ensures that it is fully reset and starts up in a known condition. The AAT3526/7/8 series of microprocessor reset devices monitor the supply voltage to a microprocessor and assert a reset signal whenever the V_{CC} voltage falls below a factory programmed threshold. This threshold is accurate within +/-1.5% at 25°C and within +/- 2.5% over the entire operating temperature range. The reset signal remains asserted for a minimum of 150ms after V_{CC} has risen above the threshold as shown in Figure 1. Figure 1: Reset Timing Diagram 6 3526,2002.1.0.62 ### **Applications Information** #### **Reset Output Options** The AAT3528 has an active low open drain output and the AAT3526/7 have a push-pull output. The AAT3528 may be used in multiple voltage systems, with an external pull-up resistor. This allows the AAT3528 to interface to microprocessors with higher supply voltages up to 5.5V (Figure 2). In the event of a power down or brown-out condition the reset signal remains valid until the $V_{\rm CC}$ drops below 1.2V. To ensure validity down to ground an external 100k Ω resistor should be connected between the RESET output and GND. #### **Manual Reset Input** A logic low signal on \overline{MR} asserts a reset condition. Reset continues to be asserted as long as \overline{MR} is low and for a minimum of 150ms after \overline{MR} returns high. This input is internally pulled up to V_{CC} via a 20k Ω resistor, so leaving the pin unconnected is acceptable if manual reset function is not needed. The \overline{MR} input is internally debounced which allows use of a mechanical switch. It should be a normally-open momentary switch connected from $\overline{\text{MR}}$ to GND. Additionally, the $\overline{\text{MR}}$ pin can be driven from TTL, CMOS, or open drain logic outputs. #### **Supply Voltage Transient Behavior** In some cases fast negative transients of short duration can appear on the V_{CC} power supply. The AAT3526/7/8 series devices provide some immunity to line transients which can generate invalid reset pulses. Figure 1 shows typical behavior to short duration pulses verses RESET comparator overdrive. As shown in the Maximum Transient Duration vs. Reset Threshold Overdrive graph, when the transient voltage becomes larger, the time allowed before asserting a reset becomes shorter. e.g. typically a transient of 100mV below the reset threshold would have to present for more than 50 μ s to cause a reset. Immunity can be increased by the addition of a small by-pass capacitor of 0.1μ F connected as close to the V_{CC} pin as possible. Figure 2: Using AAT3528 Open Drain Output with Multiple Supplies # Factory Trimmed Reset Thresholds* and Ordering Information Table 1 | | Reset Thre | | | shold Voltage, V _{TH} (V) | | | | |--|------------|-----------------------|-------|------------------------------------|-----------------------------|-------|--| | Ordering | | T _A = 25°C | | | T _A = 40 to 85°C | | | | Part Number | Marking | Min | Тур | Max | Min | Max | | | AAT3526ICX-2.32-200-T1
AAT3527ICX-2.32-200-T1
AAT3528ICX-2.32-200-T1 | | 2.285 | 2.320 | 2.355 | 2.262 | 2.378 | | | AAT3526ICX-2.63-200-T1
AAT3527ICX-2.63-200-T1
AAT3528ICX-2.63-200-T1 | | 2.591 | 2.630 | 2.669 | 2.564 | 2.696 | | | AAT3526ICX-2.93-200-T1
AAT3527ICX-2.93-200-T1
AAT3528ICX-2.93-200-T1 | | 2.886 | 2.930 | 2.974 | 2.857 | 3.003 | | | AAT3526ICX-3.08-200-T1
AAT3527ICX-3.08-200-T1
AAT3528ICX-3.08-200-T1 | | 3.034 | 3.080 | 3.126 | 3.003 | 3.157 | | | AAT3526ICX-4.38-200-T1
AAT3527ICX-4.38-200-T1
AAT3528ICX-4.38-200-T1 | | 4.314 | 4.380 | 4.446 | 4.271 | 4.490 | | | AAT3526ICX-4.63-200-T1
AAT3527ICX-4.63-200-T1
AAT3528ICX-4.63-200-T1 | | 4.561 | 4.630 | 4.699 | 4.514 | 4.746 | | ^{*}Contact Local Sales Office for custom trimmed options 8 3526.2002.1.0.62 # **Package Information** #### **SOT143** | Dim | Millin | neters | Inches | | | |------|--------|--------|-----------|-------|--| | וווט | Min | Max | Min | Max | | | Α | 0.787 | 1.194 | 0.031 | 0.047 | | | A1 | 0.025 | 1.027 | 0.001 | 0.005 | | | В | 0.356 | 0.559 | 0.014 | 0.022 | | | B1 | 0.762 | 0.965 | 0.030 | 0.038 | | | С | 0.086 | 0.152 | 0.0034 | 0.006 | | | D | 2.667 | 3.048 | 0.105 | 0.120 | | | Е | 1.194 | 1.397 | 0.047 | 0.055 | | | E1 | 1.803 | 2.007 | 0.071 | 0.079 | | | E2 | 0.200 | BSC | 0.008 BSC | | | | Н | 2.083 | 2.489 | 0.082 | 0.098 | | | Ι | 0.102 | 0.305 | 0.004 | 0.012 | | | S | 0.450 | 0.600 | 0.018 | 0.024 | | | Θ | 0° | 8° | 0° | 8° | | # AAT3526/7/8 MicroPower Supervisory Circuit with Manual Reset This page intentionally left blank. Advanced Analogic Technologies, Inc. 1250 Oakmead Parkway, Suite 310, Sunnyvale, CA 94086 Phone (408) 524-9684 Fax (408) 524-9689