

HIP4082

80V, 1.25A Peak Current H-Bridge FET Driver

March 1995

Features

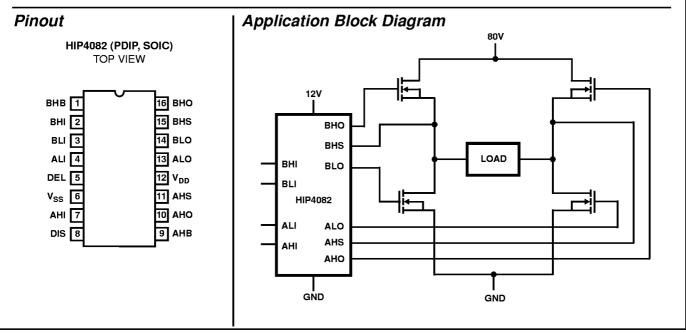
- Independently Drives 4 N-Channel FET in Half Bridge or Full Bridge Configurations
- Bootstrap Supply Max Voltage to 95VDC
- Drives 1000pF Load in Free Air at 50°C with Rise and Fall Times of Typically 15ns
- User-Programmable Dead Time (0.1 to 4.5μs)
- DIS (Disable) Overrides Input Control and Refreshes Bootstrap Capacitor when Pulled Low
- Input Logic Thresholds Compatible with 5V to 15V Logic Levels
- · Shoot-Through Protection
- · Undervoltage Protection

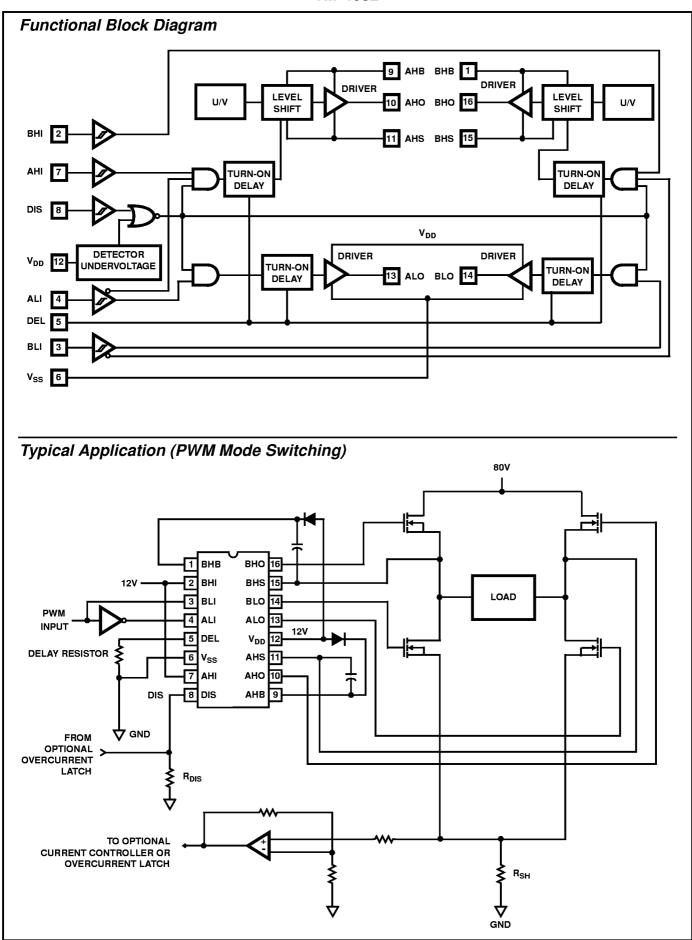
Applications

- UPS Systems
- · DC Motor Controls
- Full Bridge Power Supplies
- · Class D Audio Power Amplifiers
- Noise Cancellation Systems
- · Battery Powered Vehicles
- Peripherals
- Medium/Large Voice Coil Motors

Description

The HIP4082 is a medium frequency, medium voltage H-Bridge N-Channel MOSFET driver IC, available in 16 lead plastic SOIC (N) and DIP packages.


Specifically targeted for PWM motor control and UPS applications, bridge based designs are made simple and flexible with the HIP4082 H-bridge driver. With operation up to 80V, the device is best suited to applications of moderate power levels.


Similar to the HIP4081, it has a flexible input protocol for driving every possible switch combination except those which would cause a shoot-through condition. The HIP4082's reduced drive current allows smaller packaging and it has a much wider range of programmable dead times (0.1 to 4.5µs) making it ideal for switching frequencies up to 200kHz. The HIP4082 does not contain an internal charge pump, but does incorporate non-latching level-shift translation control of the upper drive circuits.

This set of features and specifications is optimized for applications where size and cost are important. For applications needing higher drive capability the HIP4080A and HIP4081A are recommended.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HIP4082IB	-55°C to +125°C	16 Lead Plastic SOIC (N)
HIP4082IP	-55°C to +125°C	16 Lead Plastic DIP

Specifications HIP4082

Absolute Maximum Ratings

Thermal Information

Supply Voltage, V _{DD} 0.3V to 16V
Logic I/O Voltages0.3V to V _{DD} +0.3V
Voltage on AHS, BHS6V (Transient) to 80V (25°C to 150°C)
Voltage on AHS, BHS6V (Transient) to 70V (-55°C to150°C)
Voltage on AHB, BHBV _{AHS, BHS} -0.3V to V _{AHS, BHS} +V _{DD}
Voltage on ALO, BLO
Voltage on AHO, BHO V _{AHS, BHS} -0.3V to V _{AHB, BHB} +0.3V Input
Current, DEL
Phase Slew Rate

Thermal Resistance, Junction-Ambient	$\theta_{\sf JA}$
SOIC Package	115°C/W
DIP Package	90°C/W
Maximum Power Dissipation	See Curve
Storage Temperature Range65°C	to +150°C
Operating Max. Junction Temperature	+150°C
Lead Temperature (Soldering 10s)	+300°C
(For SOIC - Lead Tips Only))	

NOTE: All voltages are relative V_{SS} unless otherwise specified.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Supply Voltage, V _{DD} +8.5V to +15V	Input Current, DEL4mA to -100μA
Voltage on V _{SS}	
Voltage on AHB, BHB V _{AHS, BHS} +7.5V to V _{AHS, BHS} +V _{DD}	

Electrical Specifications $V_{DD} = V_{AHB} = V_{BHB} = 12V$, $V_{SS} = V_{AHS} = V_{BHS} = 0V$, $R_{DEL} = 100K$

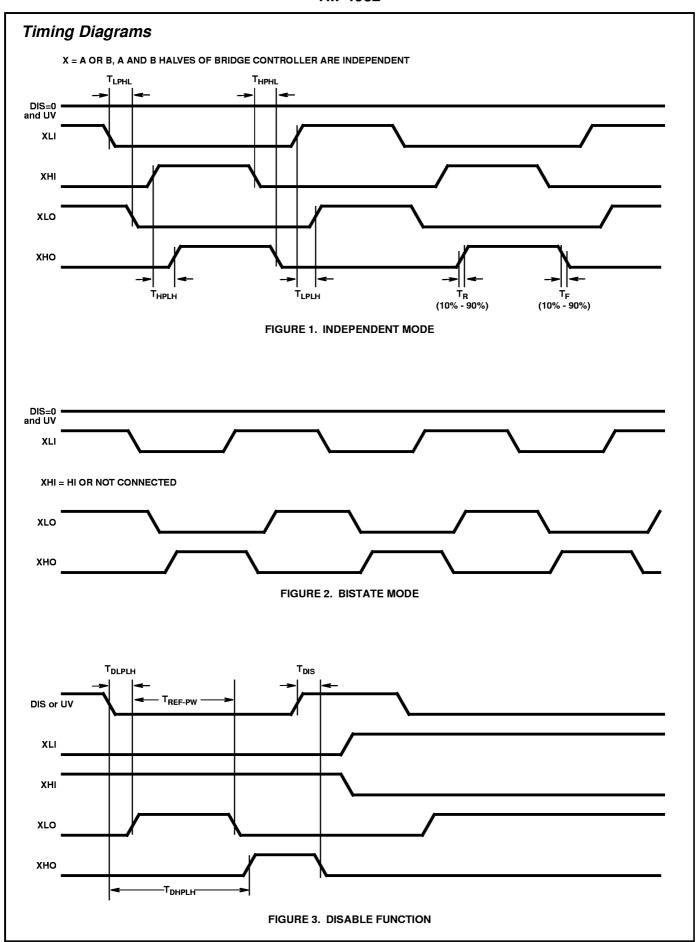
			T _J = +25°C			T _J = -55°C TO +150°C		
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	МАХ	MIN	МАХ	UNITS
SUPPLY CURRENTS & UNDER VOLTA	AGE PROTECTION	N .						
V _{DD} Quiescent Current	I _{DD}	All inputs = 0V, R _{DEL} = 100K	1.2	2.3	3.5	0.85	4	mA
		All inputs = 0V, R _{DEL} = 10K	2.2	4.0	5.5	1.9	6.0	mA
V _{DD} Operating Current	I _{DDO}	f = 50kHz, no load	1.5	2.6	4.0	1.1	4.2	mA
		50kHz, no load, R_{DEL} = 10kΩ	2.5	4.0	6.4	2.1	6.6	mA
AHB, BHB Off Quiescent Current	I _{AHBL} , I _{BHBL}	AHI = BHI = 0V	0.5	1.0	1.5	0.4	1.6	mA
AHB, BHB On Quiescent Current	І _{АНВН} , І _{ВНВН}	AHI = BHI = V _{DD}	65	145	240	40	250	μА
AHB, BHB Operating Current	I _{AHBO} , I _{BHBO}	f = 50kHz, CL = 1000pF	.65	1.1	1.8	.45	2.0	mA
AHS, BHS Leakage Current	I _{HLK}	V _{AHS} = V _{BHS} = 80V V _{AHB} = V _{BHB} = 96	-	-	1.0	-	-	μА
V _{DD} Rising Undervoltage Threshold	V _{DDUV+}		6.8	7.6	8.25	6.5	8.5	٧
V _{DD} Falling Undervoltage Threshold	V _{DDUV-}		6.5	7.1	7.8	6.25	8.1	٧
Undervoltage Hysteresis	UVHYS		0.17	0.4	0.75	0.15	0.90	٧
AHB, BHB Undervoltage Threshold	VHBUV	Referenced to AHS & BHS	5	6.0	7	4.5	7.5	٧
INPUT PINS: ALI, BLI, AHI, BHI, & DIS	•		_					
Low Level Input Voltage	V _{IL}	Full Operating Conditions	-	-	1.0	-	0.8	٧
High Level Input Voltage	V _{IH}	Full Operating Conditions	2.5	-	-	2.7		٧
Input Voltage Hysteresis			-	35	-	-	-	mV
Low Level Input Current	I _{IL}	V _{IN} = 0V, Full Operating Conditions	-145	-100	-60	-150	-50	μΑ
High Level Input Current	l _{IH}	V _{IN} = 5V, Full Operating Conditions	-1	-	+1	-10	+10	μА
TURN-ON DELAY PIN DEL	•		•					
Dead Time	T _{DEAD}	R _{DEL} = 100K	2.5	4.5	8.0	2.0	8.5	μS
		R _{DEL} = 10K	0.27	0.5	0.75	0.2	0.85	μS
GATE DRIVER OUTPUT PINS: ALO, BI	O, AHO, & BHO		_	-	_		_	
Low Level Output Voltage	V _{OL}	I _{OUT} = 50mA	0.65		1.1	0.5	1.2	٧
High Level Output Voltage	V _{DD} -V _{OH}	I _{OUT} = -50mA	0.7		1.2	0.5	1.3	٧
Peak Pullup Current	I _O +	V _{OUT} = 0V	1.1	1.4	2.5	0.85	2.75	Α
Peak Pulldown Current	I _O -	V _{OUT} = 12V	1.0	1.3	2.3	0.75	2.5	Α

Specifications HIP4082

 $\textbf{Switching Specifications} \quad V_{DD} = V_{AHB} = V_{BHB} = 12V, \ V_{SS} = V_{AHS} = V_{BHS} = 0V, \ R_{DEL} = 100K, \ C_L = 1000pF.$

			T _J = +25°C		T _J = -55°C TO +150°C			
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	МАХ	MIN	MAX	UNITS
Lower Turn-off Propagation Delay (ALI-ALO, BLI-BLO)	T _{LPHL}		-	25	50	-	70	ns
Upper Turn-off Propagation Delay (AHI-AHO, BHI-BHO)	T _{HPHL}		-	55	80	-	100	ns
Lower Turn-on Propagation Delay (ALI-ALO, BLI-BLO)	T _{LPLH}		-	40	85	-	100	ns
Upper Turn-on Propagation Delay (AHI-AHO, BHI-BHO)	T _{HPLH}		-	75	110	-	150	ns
Rise Time	T _R		-	9	20	-	25	ns
Fall Time	T _F		-	9	20	-	25	ns
Minimum Input Pulse Width	T _{PWIN-ON/OFF}		50	-	-	50	-	ns
Output Pulse Response to 50 ns Input Pulse	T _{PWOUT}			63			80	ns
Disable Turn-off Propagation Delay (DIS - Lower Outputs)	T _{DISLOW}		-	50	80	-	90	ns
Disable Turn-off Propagation Delay (DIS - Upper Outputs)	T _{DISHIGH}		-	75	100	-	125	ns
Disable Turn-on Propagation Delay (DIS - ALO & BLO)	T _{DLPLH}		-	40	70	-	100	ns
Disable Turn-on Propagation Delay (DIS- AHO & BHO)	T _{DHPLH}	R _{DEL} = 10K	-	1.2	2	-	3	μs
Refresh Pulse Width (ALO & BLO)	T _{REF-PW}		375	580	900	350	950	ns

TRUTH TABLE


	INPUT					ОИТРИТ		
ALI, BLI	AHI, BHI	VDDUV	VHBUV	DIS	ALO, BLO	AHO, BHO		
Х	Х	Х	Х	1	0	0		
Х	Х	1	Х	Х	0	0		
0	Х	0	1	0	0	0		
1	Х	0	Х	0	1	0		
0	1	0	0	0	0	1		
0	0	0	0	0	0	0		

NOTE: X signifies that input can be either a "1" or "0".

HIP4082

Pin Descriptions

PIN NUMBER	SYMBOL	DESCRIPTION
1	внв	B High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to this pin.
2	ВНІ	B High-side Input. Logic level input that controls BHO driver (Pin 16). BLI (Pin 3) high level input overrides BHI high level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 8) high level input overrides BHI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than V_{DD}). An internal 100 μ A pull-up to V_{DD} will hold BHI high, so no connection is required if high-side and low-side outputs are to be controlled by the low-side input.
3	BLI	B Low-side Input. Logic level input that controls BLO driver (Pin 14). If BHI (Pin 2) is driven high or not connected externally then BLI controls both BLO and BHO drivers, with dead time set by delay currents at DEL (Pin 5). DIS (Pin 8) high level input overrides BLI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than V _{DD}). An internal 100μA pull-up to V _{DD} will hold BLI high if this pin is not driven.
4	ALI	A Low-side Input. Logic level input that controls ALO driver (Pin 13). If AHI (Pin 7) is driven high or not connected externally then ALI controls both ALO and AHO drivers, with dead time set by delay currents at DEL (Pin 5). DIS (Pin 8) high level input overrides ALI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than V _{DD}). An internal 100μA pull-up to V _{DD} will hold ALI high if this pin is not driven.
5	DEL	Turn-on DELay. Connect resistor from this pin to V _{SS} to set timing current that defines the dead time between drivers. All drivers turn-off with no adjustable delay, so the DEL resistor guarantees no shoot-through by delaying the turn-on of all drivers. The voltage across the DEL resistor is approximately Vdd -2V.
6	V _{SS}	Chip negative supply, generally will be ground.
7	АНІ	A High-side Input. Logic level input that controls AHO driver (Pin 10). ALI (Pin 4) high level input overrides AHI high level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 8) high level input overrides AHI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than V_{DD}). An internal 100 μ A pull-up to V_{DD} will hold AHI high, so no connection is required if high-side and low-side outputs are to be controlled by the low-side input.
8	DIS	DISable input. Logic level input that when taken high sets all four outputs low. DIS high overrides all other inputs. When DIS is taken low the outputs are controlled by the other inputs. The pin can be driven by signal levels of 0V to 15V (no greater than V_{DD}). An internal 100 μ A pull-up to V_{DD} will hold DIS high if this pin is not driven.
9	AHB	A High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to this pin.
10	AHO	A High-side Output. Connect to gate of A High-side power MOSFET.
11	AHS	A High-side Source connection. Connect to source of A High-side power MOSFET. Connect negative side of bootstrap capacitor to this pin.
12	V _{DD}	Positive supply to control logic and lower gate drivers. De-couple this pin to V _{SS} (Pin 6).
13	ALO	A Low-side Output. Connect to gate of A Low-side power MOSFET.
14	BLO	B Low-side Output. Connect to gate of B Low-side power MOSFET.
15	BHS	B High-side Source connection. Connect to source of B High-side power MOSFET. Connect negative side of bootstrap capacitor to this pin.
16	вно	B High-side Output. Connect to gate of B High-side power MOSFET.

Performance Curves

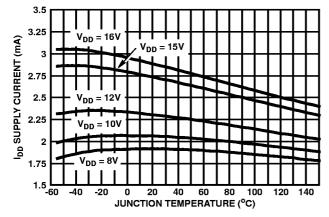


FIGURE 4. I_{DD} SUPPLY CURRENT vs TEMPERATURE AND V_{DD} SUPPLY VOLTAGE

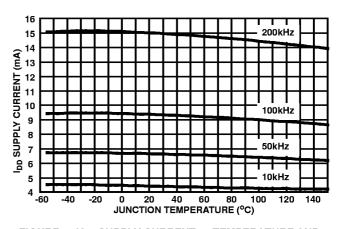


FIGURE 5. V_{DD} SUPPLY CURRENT vs TEMPERATURE AND SWITCHING FREQUENCY (1000pF LOAD)

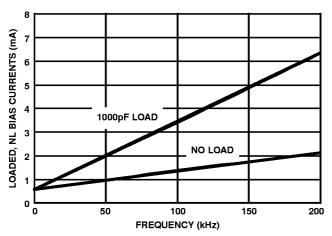


FIGURE 6. FLOATING (IXHB) BIAS CURRENT vs FREQUENCY AND LOAD

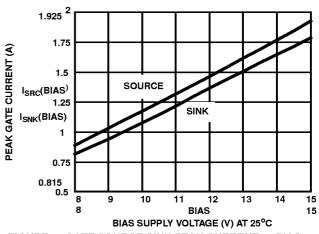


FIGURE 7. GATE SOURCE/SINK PEAK CURRENT VS BIAS SUPPLY VOLTAGE AT 25°C

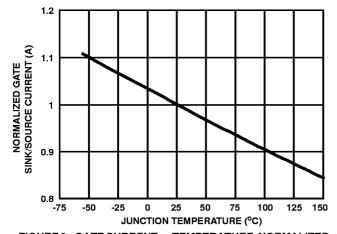


FIGURE8. GATE CURRENT vs TEMPERATURE, NORMALIZED TO 25° C

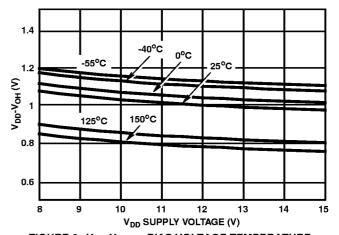


FIGURE 9. V_{DD} - V_{OH} vs BIAS VOLTAGE TEMPERATURE

Performance Curves (Continued)

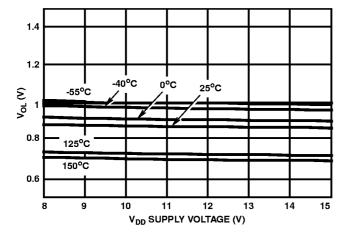


FIGURE 10. V_{OL} vs BIAS VOLTAGE AND TEMPERATURE

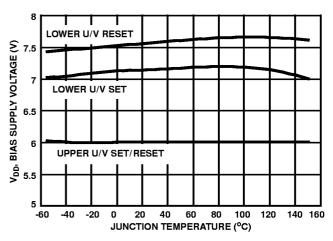


FIGURE 11. UNDERVOLTAGE TRIP VOLTAGES vs TEMPERA-TURE

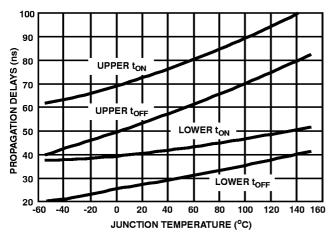


FIGURE 12. UPPER LOWER TURN-ON/TURN-OFF PROPAGATION DELAY vs TEMPERATURE

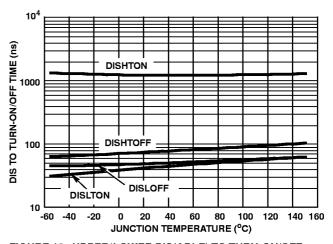


FIGURE 13. UPPER/LOWER DIS(ABLE) TO TURN-ON/OFF vs TEMPERATURE (°C)

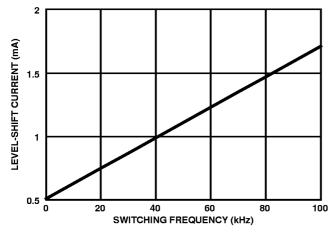


FIGURE 14. FULL BRIDGE LEVEL-SHIFT CURRENT vs FREQUENCY (kHz)

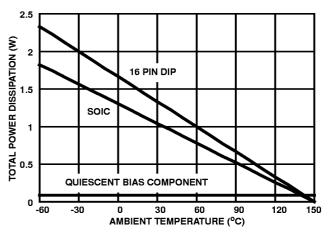


FIGURE 15. MAXIMUM POWER DISSIPATION VS AMBIENT TEMPERATURE

Performance Curves (Continued)

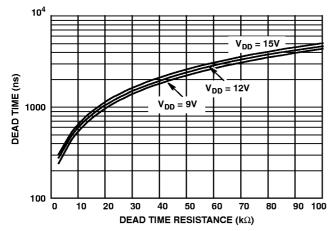


FIGURE 16. DEAD-TIME vs DEL RESISTANCE AND BIAS SUPPLY (V_{DD}) VOLTAGE

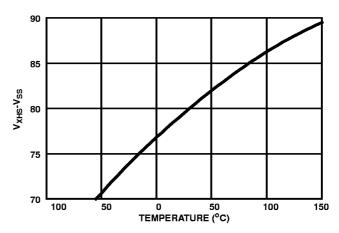
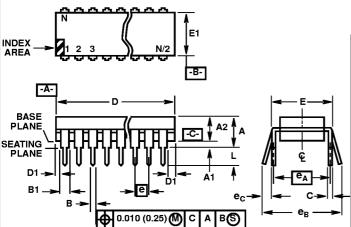
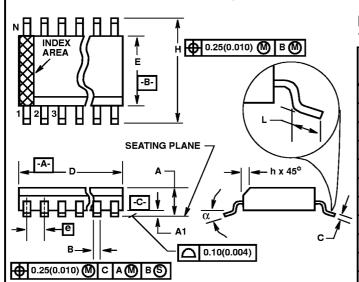



FIGURE 17. MAXIMUM OPERATING PEAK AHS/BHS VOLTAGE vs TEMPERATURE

Dual-In-Line Plastic Packages (PDIP)

NOTES:


- Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
- Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
- D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
- E and e_A are measured with the leads constrained to be perpendicular to datum -C-
- 7. e_B and e_C are measured at the lead tips with the leads unconstrained. e_C must be zero or greater.
- B1 maximum dimensions do not include dambar protrusions.
 Dambar protrusions shall not exceed 0.010 inch (0.25mm).
- 9. N is the maximum number of terminal positions.
- Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).

E16.3 (JEDEC MS-001-BB ISSUE D)
16 LEAD DUAL-IN-LINE PLASTIC PACKAGE

	INC	INCHES MILLIMETE			
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
В	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8, 10
С	0.008	0.014	0.204	0.355	-
. D	0.735	0.775	18.66	19.68	5
D1	0.005	-	0.13	-	5
Е	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
е	0.100	BSC	2.54	BSC	-
e _A	0.300	BSC	7.62 BSC		6
e _B	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	1	6	1	6	9

Rev. 0 12/93

Small Outline Plastic Packages (SOIC)

NOTES:

- Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- The lead width "B", as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch)
- 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M16.15 (JEDEC MS-012-AC ISSUE C)
16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

	INC	HES	MILLIM	IETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.0532	0.0688	1.35	1.75	-
A1	0.0040	0.0098	0.10	0.25	-
В	0.013	0.020	0.33	0.51	9
С	0.0075	0.0098	0.19	0.25	-
D	0.3859	0.3937	9.80	10.00	3
Е	0.1497	0.1574	3.80	4.00	4
е	0.050	BSC	1.27 BSC		-
Τ	0.2284	0.2440	5.80	6.20	-
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N	1	6	1	6	7
α	0°	8°	0°	8°	-

Rev. 0 12/93