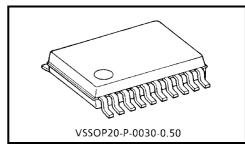
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

T C 7 M H 5 7 3 F K

Octal D-Type Latch with 3-State Output


The TC7MH573FK is an advanced high speed CMOS octal latch with 3-state output fabricated with silicon gate $\rm C^2MOS$ technology.

It achieves the high speed operation similar to equivalent bipolar schottky TTL while maintaining the CMOS low power dissipation.

This 8 bit D-type latch is controlled by a latch enable input (LE) and a output enable input (\overline{OE}).

When the \overline{OE} input is high, the eight outputs are in a high impedance state.

An input protection circuit ensures that 0 to 7 V can be applied

Weight: 0.03 g (typ.)

to the input pins without regard to the supply voltage. This device can be used to interface 5~V to 3~V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

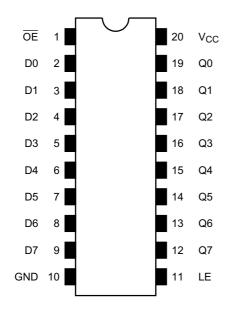
Features

- High speed: $t_{pd} = 4.5 \text{ ns (typ.) (VCC} = 5 \text{ V)}$
- Low power dissipation: $ICC = 4 \mu A \text{ (max) (Ta} = 25^{\circ}C)$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Power down protection is provided on all inputs.
- Balanced propagation delays: $t_pLH \approx t_pHL$
- Wide operating voltage range: VCC (opr) = 2~5.5 V
- Low noise: VOLP = 1.0 V (max)
- Pin and function compatible with 74ALS573

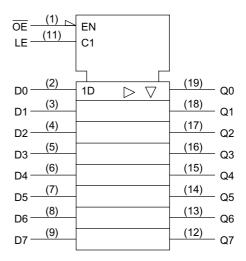
000630EBA1

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The products described in this document are subject to the foreign exchange and foreign trade laws


• The information contained herein is subject to change without notice.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the
buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and
to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or
damage to property.

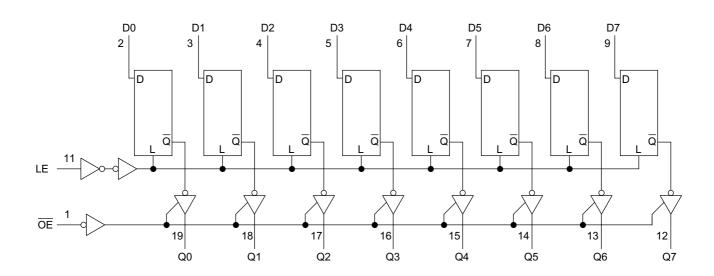

[•] The Toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of Toshiba products listed in this document shall be made at the customer's own risk.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

Pin Assignment (top view)

IEC Logic Symbol

Truth Table


	Inputs	Outputs	
ŌĒ	LE	D	Outputs
Н	Х	X	Z
L	L	Х	Q _n
L	Н	L	L
L	Н	Н	Н

X: Don't care

Z: High impedance

 Q_n : Q outputs are latched at the time when the LE input is taken to a low logic level.

System Diagram

Maximum Ratings

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	-0.5~7.0	V
DC input voltage	V _{IN}	-0.5~7.0	V
DC output voltage	Vout	-0.5~V _{CC} + 0.5	V
Input diode current	I _{IK}	-20	mA
Output diode current	I _{OK}	±20	mA
DC output current	I _{OUT}	±25	mA
DC V _{CC} /ground current	I _{CC}	±75	mA
Power dissipation	P _D	180	mW
Storage temperature	T _{stg}	-65~150	°C

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	2.0~5.5	V
Input voltage	V _{IN}	0~5.5	V
Output voltage	V _{OUT}	0~V _{CC}	V
Operating temperature	T _{opr}	-40~85	°C
Input rise and fall time	dt/dv	$0\sim100 \ (V_{CC}=3.3\pm0.3 \ V)$	ns/V
input rise and rail time	αί/αν	$0\sim20 \ (V_{CC}=5\pm0.5 \ V)$	115/ V

Electrical Characteristics

DC Characteristics

Characteristics		Symbol Test Condition		Condition		Ta = 25°C			Ta = -40~85°C		Unit
Cilarac	rensuos	Symbol			V _{CC} (V)	Min	Тур.	Max	Min	Max	Offic
					2.0	1.50	_	_	1.50	_	
Input voltage	High level	V_{IH}		_		V _{CC} ×0.7	_	_	V _{CC} × 0.7	_	V
input voitage					2.0	_	_	0.50	_	0.50	V
	Low level	V_{IL}		_	3.0~5.5	_	_	V _{CC} × 0.3	_	V _{CC} ×0.3	
				$I_{OH} = -50 \mu A$	2.0	1.9	2.0		1.9		
					3.0	2.9	3.0		2.9	_	V
	High level	V _{OH}	V _{IN} = V _{IH} or V _{IL}		4.5	4.4	4.5		4.4	_	
				$I_{OH} = -4 \text{ mA}$	3.0	2.58	_	_	2.48	_	
Output				$I_{OH} = -8 \text{ mA}$	4.5	3.94	_	_	3.80	_	
voltage					2.0	_	0	0.1	_	0.1	V
				V_{IH} $I_{OL} = 50 \mu A$	3.0		0	0.1	_	0.1	
	Low level	V_{OL}	V _{IN} = V _{IH} or V _{IL}		4.5	_	0	0.1	—	0.1	
				$I_{OL} = 4 \text{ mA}$	3.0			0.36		0.44	
			I _{OL} = 8 mA		4.5	_	—	0.36	—	0.44	
3-state output	off-state current	I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or GND}$		5.5	_	_	±0.25	_	±2.50	μА
Input leakage	current	I _{IN}	V _{IN} = 5.5 V or GND		0~5.5		_	±0.1	_	±1.0	μΑ
Quiescent sup	ply current	Icc	$V_{IN} = V_{CC}$	$V_{IN} = V_{CC}$ or GND				4.0		40.0	μΑ

Timing Requirements (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	mbol Test Condition		Ta = 25°C		Ta = -40~85°C	Unit
	Symbol	rest Condition	V _{CC} (V)	Тур.	Limit	Limit	Offic
Minimum pulse width	t		3.3 ± 0.3	_	5.0	5.0	no
(LE)	tw (H)	_	5.0 ± 0.5	_	5.0	5.0	ns
Minimum set-up time			3.3 ± 0.3	_	3.5	3.5	
	t _s	_	5.0 ± 0.5	_	3.5	3.5	ns
Minimum hold time	4.		3.3 ± 0.3	_	1.5	1.5	no
	t _h	_	5.0 ± 0.5	_	1.5	1.5	ns

AC Characteristics (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	Test Condition			Ta = 25°C			Ta = -40~85°C		Unit
Characteristics	Symbol	rest Condition	V _{CC} (V)	C _L (pF)	Min	Тур.	Max	Min	Max	Offic
			3.3 ± 0.3	15	_	7.6	11.9	1.0	14.0	
Propagation delay time	t _{pLH}		3.3 ± 0.3	50	_	10.1	15.4	1.0	17.5	
(LE-Q)	t _{pHL}	_	5.0 ± 0.5	15	_	5.0	7.7	1.0	9.0	ns
			3.0 ± 0.5	50	_	6.5	9.7	1.0	11.0	
			3.3 ± 0.3	15	_	7.0	11.0	1.0	13.0	
Propagation delay time	t _{pLH}		3.3 ± 0.3	50	_	9.5	14.5	1.0	16.5	ns
(D-Q)	t _{pHL}	_	5.0 ± 0.5	15	_	4.5	6.8	1.0	8.0	
			5.0 ± 0.5	50	_	6.0	8.8	1.0	10.0	
	t _{pZL} t _{pZH}	$R_L = 1 \text{ k}\Omega$	3.3 ± 0.3	15	_	7.3	11.5	1.0	13.5	- ns
2 state suitaut anable time				50	_	9.8	15.0	1.0	17.0	
3-state output enable time			5.0 ± 0.5	15	_	5.2	7.7	1.0	9.0	
				50	_	6.7	9.7	1.0	11.0	
3-state output disable time	t _{pLZ}	$R_L = 1 \text{ k}\Omega$	3.3 ± 0.3	50	_	10.7	14.5	1.0	16.5	ns
3-state output disable time	tpHZ		5.0 ± 0.5	50	_	6.7	9.7	1.0	11.0	115
Output to output skew	t _{osLH}	(Note1)	3.3 ± 0.3	50	_	_	1.5	_	1.5	ns
Output to output skew	t _{osHL}	(Note I)	5.0 ± 0.5	50	_	_	1.0	_	1.0	115
Input capacitance	C _{IN}		_		_	4	10	_	10	pF
Output capacitance	C _{OUT}	-	_			6		_	_	pF
Power dissipation capacitance	C _{PD}			(Note2)	_	29	_	_	_	pF

Note1: This parameter is guaranteed by design.

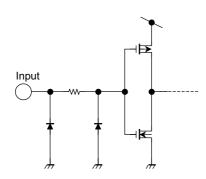
 $t_{\text{OSLH}} = |t_{\text{pLHm}} - t_{\text{pLHn}}|, \ t_{\text{OSHL}} = |t_{\text{pHLm}} - t_{\text{pHLn}}|$

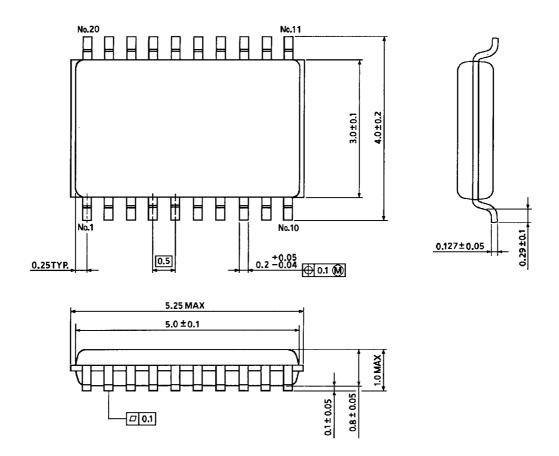
Note2: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 (per latch)$

And the total C_{PD} when n pcs of latch operate can be gained by the following equation:


C_{PD} (total) = 21 + 8 · n


Noise Characteristics (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	Test Condition		Ta = 25°C		Unit
Gridiacieristics	Syllibol	rest Condition	V _{CC} (V)	Тур.	Limit	Offic
Quiet output maximum dynamic V _{OL}	V _{OLP}	C _L = 50 pF	5.0	0.8	1.0	V
Quiet output minimum dynamic V _{OL}	V _{OLV}	C _L = 50 pF	5.0	-0.8	-1.0	V
Minimum high level dynamic input voltage V_{IH}	V _{IHD}	C _L = 50 pF	5.0	_	3.5	V
Maximum low level dynamic input voltage V_{IL}	V _{ILD}	C _L = 50 pF	5.0	_	1.5	V

Input Equivalent Circuit

Package Dimensions

Weight: 0.03 g (typ.)