131072-word × 8-bit CMOS Flash Memory

HITACHI

ADE-203-122J (Z) Rev. 10.0 Nov. 15, 1996

Description

The Hitachi HN28F101 is a 131072-word × 8-bit CMOS flash Memory, realizing on-board programming. It programs or erases data with only on-board power supply (12 V V_{PP} supply/5 V V_{CC} supply). It programs data with fast programming algorithm by command inputs. It has two types of erase algorithm : automatic erase and fast erase by command inputs. Automatic erase function can erase data automatically without external control only by inputting trigger pulse and inform erase completion to CPU by status polling. The HN28F101 can control programming erase algorithm externally.

Features

- On-board power supply (V_{CC}/V_{PP})
 - -- V_{CC} = 5 V ± 10%
 - $V_{PP} = V_{SS}$ to V_{CC} (Read)
 - --- $V_{PP} = 12.0 \text{ V} \pm 0.6 \text{ V}$ (Erase/Program)
- Fast access time
 - 120 ns/150 ns/200 ns (max)
- Programming function
 - Byte programming
 - Programming time: 25 μs typ/byte
 - Address, data, control latch function
- On-board automatic erase function
 - Chip erase
 - Erase time: 1 s typ
 - Address, data, control latch function
 - Status polling function
- Low power dissipation
 - $I_{CC} = 10 \text{ mA typ}$ (Read)
 - ---- $I_{CC} = 20 \ \mu A \ max$ (Standby)
 - $I_{PP} = 30 \text{ mA typ}$ (Auto erase/Program)
 - ---- $I_{PP} = 20 \ \mu A \ max \ (Read/Standby)$

- Erasing endurance: 10,000 times
- Pin arrangement: 32-pin JEDEC standard
- Package
 - 32-pin SOP
 - 32-pin TSOP

Ordering Information

Access Time	Package
120 ns	32-pin plastic SOP (FP-32D)
150 ns	
200 ns	
120 ns	32-pin plastic TSOP (TFP-32DA)
150 ns	
200 ns	
120 ns	32-pin plastic TSOP (TFP-32DAR)
150 ns	
200 ns	
	Access Time 120 ns 150 ns 200 ns 120 ns 120 ns 120 ns 120 ns 150 ns 200 ns 120 ns 120 ns 120 ns 120 ns 120 ns 120 ns 150 ns 200 ns

Pin Arrangement

Pin Arrangement (cont)

Pin Description

Pin Name	Function
A0-A16	Address
I/00-I/07	Input/output
CE	Chip enable
ŌĒ	Output enable
WE	Write enable
V _{cc}	Power supply
V _{PP}	Programming power supply
V _{ss}	Ground

Block Diagram

Mode Selection

		Pin	Pin								
		V_{PP}	CE	ŌĒ	WE	A9	I/O0 – I/O7				
Mode	SOP, TSOP	(1) (9)	(22) (30)	(24) (32)	(31) (7)	(26) (2)	(13 – 15, 17 – 21) (21 – 23, 25 – 29)				
Read	Read	V_{cc}^{*6}	V_{IL}	V_{IL}	$V_{\rm IH}$	A9	Dout				
	Output disable	V_{cc}	$V_{\rm IL}$	$V_{\rm IH}$	$V_{\rm IH}$	Х	High-Z				
	Standby	V_{cc}	V _{IH}	Х	Х	Х	High-Z				
	Identifier*1	V_{cc}	VIL	V_{IL}	$V_{\rm IH}$	$V_{\rm H}^{*2}$	ID				
Command program	Read* ^{3,*5}	V_{PP}	VIL	$V_{\rm IL}$	V _{IH}	A9	Dout				
	Output disable	V_{PP}	VIL	$V_{\rm IH}$	V _{IH}	Х	High-Z				
	Standby	V_{PP}	V_{IH}	Х	Х	Х	High-Z				
	Write ^{*4}	V_{PP}	V _{IL}	V _{IH}	V _{IL}	A9	Din				

Notes: 1. Device identifier code can be output in command programming mode. Refer to the table of command address and data input.

2. $V_{\rm H}$: 11.5 $\leq V_{\rm H} \leq$ 12.5V.

 Data can be read when 12 V is applied to V_{PP}. Device identifier code can be output by command inputs.

4. Refer to the table of command address and data input. Data is programmed, erased, or verified after mode setting by command inputs.

5. Status of automatic erase can be verified in this mode. Status outputs on I/O7. I/O0 to I/O6 are in high impedance state.

6. X : V_{IH} or V_{IL}. V_{PP} = 0 V to V_{CC}

		First cycle			Second cycle			
Command	The number of cycle	Operation mode ^{*1}	Address* ²	Data* ³	Operation mode ^{*1}	Address*2	Data*3	
Read (memory)*4	1	Write	×	00H	Read	RA	Dout	
Read identified codes	2	Write	X	90H	Read	IA	ID	
Setup erase/erase*5	2	Write	×	20H	Write	×	20H	
Erase verify*5	2	Write	EA	A0H	Read	×	EVD	
Setup auto erase/ auto erase*6	2	Write	×	30H	Write	×	30H	
Setup program/ program* ⁷	2	Write	×	40H	Write	PA	PD	
Program verify*7	2	Write	×	C0H	Read	×	PVD	
Reset	2	Write	×	FFH	Write	×	FFH	
			1 1 1	1 (

Command Address and Data Input

Notes: 1. Refer to command program mode in mode selection about operation mode.

2. Refer to device identifier mode. IA = Identifier address, PA = Programming address, EA = Erase verify address, RA = Read address

 Refer to device identifier mode. PA are latched by programming command. ID = Identifier output code, PD = Programming data, PVD = Programming verify output data, EVD = Erase verify output data

Command latch default value when applying 12 V to V_{PP} is "00H". Device is in read mode after V_{PP} is set 12 V (before other command is input).

5. All data in chip are erased. Erase data according to fast high-reliability erase flowchart.

- 6. All data in chip are erased. Data are erased automatically by internal logic circuit. External erase verify is not required. Erasure completion must be verified by status polling after automatic erase starts.
- 7. Program data according to fast high-reliability programming flowchart.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
All input and output voltage*1	Vin, Vout	-0.6* ² to +7.0	V
V _{PP} voltage*1	V _{PP}	-0.6 to +14.0	V
V _{cc} voltage*1	V _{cc}	-0.6 to +7.0	V
Operating temperature range	Topr	0 to +70	°C
Storage temperature range*3	Tstg	–55 to +125	°C
Storage temperature under bias	Tbias	-10 to +80	°C

Notes: 1. Relative to V_{ss} .

2. Vin, Vout, V_{ID} min = -2.0 V for pulse width \leq 20 ns.

3. Device storage temperature range before programming.

Capacitance (Ta = 25° C, f = 1 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input capacitance	Cin	_	_	6	pF	Vin = 0 V
Output capacitance	Cout	_	_	12	pF	Vout = 0 V

Read Operation

DC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{PP} = V_{CC} V_{SS}$, Ta = 0 to $+70^{\circ}$ C)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input leakage current	I	_	_	2	μΑ	Vin = 0 to V_{cc}
Output leakage current	I _{LO}	_	_	2	μA	Vout = 0 to V_{cc}
V _{PP} current	I _{PP1}	_		20	μA	V _{PP} = 5.5 V
Standby V_{cc} current	I _{SB1}	_	_	1	mA	$\overline{CE} = V_{IH}$
	I _{SB2}	_	_	20	μA	$\overline{CE} = V_{cc}$
Operating V_{cc} current	I _{CC1}	_	6	15	mA	lout = 0 mA, f = 1 MHz
	I _{CC2}	_	10	30	mA	lout = 0 mA, f = 8 MHz
Input voltage*3	V _{IL}	-0.3*1	_	0.8	V	
	V _{IH}	2.2		V_{cc} + 0.3 ^{*2}	V	
Output voltage	V _{OL}	_	_	0.45	V	I _{oL} = 2.1 mA
	V _{OH}	2.4	_		V	$I_{OH} = -400 \ \mu A$

Notes: 1. V_{IL} min = -2.0 V for pulse width \leq 20 ns.

2. $V_{IH} \max = V_{CC} + 1.5 V$ for pulse width $\le 20 \text{ ns.}$ If V_{IH} is over the specified maximum value, read operation cannot be guaranteed.

Only defined for DC and long cycle function test.

 V_{IL} max = 0.45 V, V_{IH} min = 2.4 V for AC function test.

AC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{PP} = V_{SS}$ to V_{CC} , Ta = 0 to $+70^{\circ}$ C)

Test Conditions

- Input pulse levels: 0.45 V/2.4 V
- Input rise and fall time: 10 ns
- Output load: 1TTL Gate + 100 pF (Including scope and jig.)
- Reference levels for measuring timing: 0.8 V, 2.0 V

		HN28F	101-12	HN28F	101-15	HN28F	101-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test conditions
Address to output delay	t _{ACC}	_	120	_	150	_	200	ns	$\overline{CE}=\overline{OE}=V_{_{IL}}$
\overline{CE} to output delay	t _{ce}	—	120	—	150	—	200	ns	$\overline{OE} = V_{IL}$
OE to output delay	t _{oe}	—	60	—	70	—	80	ns	$\overline{CE} = V_{IL}$
OE high to output float*1	t_{DF}	0	40	0	50	0	60	ns	$\overline{CE} = V_{IL}$
Address to output hold	t _{oH}	5	_	5	_	5	_	ns	$\overline{CE} = \overline{OE} = V_{IL}$

Note: 1. t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.

Read Timing Waveform

Command Programming/Data Programming/Erase Operation

DC Characteristics ($V_{CC} = 5 V \pm 10\%$, $V_{PP} = 12.0 V \pm 0.6 V$, $Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Input leakage current		I _{LI}	_	_	2	μΑ	Vin = 0 V to V_{cc}
Output leakage current		I _{LO}	—	—	2	μΑ	Vout = 0 V to V_{cc}
Standby V_{cc} current		I _{SB1}	—	—	1	mA	$\overline{CE} = V_{IH}$
		I _{SB2}	—	—	200	μΑ	$\overline{CE} = V_{CC}$
Operating V_{cc} current	Read	I _{CC1}	_	6	15	mA	lout = 0 mA, f = 1 MHz
		I _{CC2}	—	10	30	mA	lout = 0 mA, f = 8 MHz
	Program	I _{CC3}	—	2	10	mA	
	Erase	I _{CC4}	—	10	40	mA	In automatic erase
		I _{CC5}	—	5	15	mA	In high-reliability erase
V _{PP} current	Read	I _{PP1}	—	—	1	mA	V _{PP} = 12.6 V
	Program	I _{PP2}	—	5	30	mA	In programming
	Erase	I _{PP3}	—	35	80	mA	In automatic erase
		I _{PP4}	—	10	30	mA	In high-reliability erase
Input voltage		V _{IL}	- 0.3*4	_	0.8	V	
		V _{IH}	2.2	—	V_{cc} +0.3 ^{*5}	V	
Output voltage		V _{OL}	—	—	0.45	V	I _{oL} = 2.1 mA
		V _{OH}	2.4	_	—	V	I _{OH} = -400 μA

Notes: 1. V_{CC}/V_{PP} power on/off timing

 V_{cc} must be applied before or simultaneously $V_{_{PP}}$, and removed after or simultaneously $V_{_{PP}}$. This $V_{cc}/V_{_{PP}}$ power on/off timing must be satisfied at $V_{cc}/V_{_{PP}}$ on/off caused by power failure.

- 2. V_{PP} must not exceed 14 V including overshoot.
- An influence may be had upon device reliability if the device is installed or removed while V_{PP} = 12 V.
- 4. V_{IL} min = -1.0 V for pulse width \leq 20 ns.
- 5. If V_{IH} is over the specified maximum value, programming operation cannot be guaranteed.

AC Characteristics ($V_{CC} = 5 \text{ V} \pm 10\%$, $V_{PP} = 12.0 \text{ V} \pm 0.6 \text{ V}$, $Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Test Conditions

- Input pulse levels: 0.45 V/2.4 V
- Input rise and fall time: 10 ns
- Output load: 1TTL Gate + 100 pF (Including scope and jig.)
- Reference levels for measuring timing: 0.8 V, 2.0 V

		HN28F	101-12	HN28F	101-15	HN28F	101-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test conditions
Command programming cycle time	t _{cwc}	120	_	150	_	200	_	ns	
Address setup time	t _{AS}	0	—	0	—	0	—	ns	
Address hold time	t _{AH}	60	—	60	—	60	—	ns	
Data setup time	t _{DS}	50	—	50	—	50	—	ns	
Data hold time	t _{DH}	10	_	10	_	10	_	ns	
CE setup time	t _{CES}	0	_	0	_	0	_	ns	
CE hold time	t _{CEH}	50	_	50	_	50	_	ns	
V _{PP} setup time	t _{VPS}	100	_	100	_	100	_	ns	
V _{PP} hold time	t _{vpH}	100	_	100	_	100	_	ns	
WE programming pulse width	\mathbf{t}_{WEP}	70	_	70	_	80	_	ns	
WE programming pulse high time	t _{wen}	40	_	40	—	40	—	ns	
OE setup time before command programming	t _{OEWS}	0	_	0	_	0	_	ns	
\overline{OE} setup time before verify	t _{OERS}	6	—	6	—	6	—	μs	
Verify access time	t _{va}	_	120	—	150		200	ns	
Verify access time in erase	\mathbf{t}_{VAE}	—	300	_	300		300	ns	
OE setup time before status polling	t _{OEPS}	120	_	120	_	120	_	ns	
Status polling access time	t _{spa}	_	120	_	150	_	200	ns	
Standby time before programming	t _{PPW}	25	_	25	_	25	_	μs	
Standby time in erase	t _{et}	9	11	9	11	9	11	ms	
Output disable time*3	t _{DF}	0	40	0	50	0	60	ns	
Total erase time in automatic erase* ³	t _{AET}	_	30	_	30	_	30	S	

- Notes: 1. \overline{CE} , \overline{OE} , and \overline{WE} must be fixed high during V_{PP} transition from 5 V to 12 V or from 12 V to 5 V.
 - 2. Refer to read operation when $V_{PP} = V_{CC}$ about read operation while $V_{PP} = 12$ V.
 - t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.
 - 4. Address are taken into on the falling edge of write-enable pulse and addresses are latched on the rising edge of write-enable pulse during chip-enable is low. Data is latched on the rising edge of write-enable pulse during chip-enable is low.

Erase and Program Time

	Erase and program mode	Min	Typ*⁴	Max	Unit
Chip (128 kB) erase time	Auto erase mode	_	1	30	second
	Fast high-reliability erase mode*2,3	_	0.6	30	second
Chip (128 kB) program time	Fast high-reliability program mode*3	_	5	81* ⁵	second

Notes: 1. Each values are same for all read access version.

2. Excludes pre-write process before erasure and verify process (6 μ s x 128 kB).

3. Excludes system overhead.

4. Ta = 25° C, V_{PP} = 12 V, V_{CC} = 5 V

5. Theoretical value calculated from fast high-reliability programming flowchart. (25 μ s program + 6 μ s verify) x 20 times x 128 kB = 81 second.

Automatic Erase Timing Waveform

Status Polling

Status polling allows the status of the flash memory to be determined. If the flash memory is set to the status polling mode during erase cycle, I/O7 pin is lowered to V_{OL} level to indicate that the flash memory is performing erase operation. I/O7 pin is set to the V_{OH} level when erase operation has finished.

Notes: In automatic erase mode, the device automatically processes to pre-write all "0" before erasing. Therefore, it is not required to pre-write by fast high-reliability programming.

Fast High-Reliability Programming

This device can be applied the fast high-reliability programming algorithm shown in following flowchart. This algorithm allows to obtain fasterprogramming time without any voltage stress to the device nor deterioration in reliability of programmed data.

Fast High-Reliability Programming Flowchart

- Notes: In case of two or more devices are programmed simultaneously, following steps should be applied to avoid over programming for the verified device.
 - (1) Write set up program command to FFH,
 - (2) Write program command to FFH,
 - (3) Write program verify command to 00H and program verify address to read address.

Fast High-Reliability Programming Timing Waveform

V0H and V_{OL} due to an insufficiently programmed.

Fast High-Reliability Erase

This device can be applied the fast high-reliability erase algorithm showm in following flowchart. This algorithm allows to obtain faster erase time without any voltage any voltage stress to the device nor deterioration in reliability of data.

Fast High-Reliability Erasing Flowchart

Notes: In case of two or more devices are erased simultaneously, following steps should be applied to avoid over erase for verified device.

- (1) Write set up erase command to A0H and set erase verify address to verify address.
- (2) Write erase command to A0H.
- (3) Write erase verify command to A0H.

Erase Timing Waveforms

Mode Description

Device Identifier Mode

The device identifier mode allows the reading out of binary codes that identify manufacturer and type of device, from outputs of flash memory. By this mode, the device will be automatically matched its own corresponding erase and programming algorithm, using programming equipment.

HN28F101 Series Identifier Code

Identifier	Pins SOP, TSOP	A0 (12) (20)	l/O7 (21) (29)	I/O6 (20) (28)	I/O5 (19) (27)	I/O4 (18) (26)	I/O3 (17) (25)	l/O2 (15) (23)	I/O1 (14) (22)	I/O0 (13) (21)	Hex Data
Manufacturer co	ode	VIL	0	0	0	0	0	1	1	1	07
Device code		$V_{\rm IH}$	0	0	0	1	1	0	0	1	19

Notes: 1. Device identifier code can be read out by applying 12.0 V \pm 0.5 V to A9 when V_{PP} = V_{CC}, or inputting command while V_{PP} is 12 V.

2. A1 to A8, A10 to A16, and $\overline{CE} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$

3. $V_{cc} = V_{PP} = 5 \text{ V} \pm 10\%$

Package Dimensions

HN28F101FP Series (FP-32D)

Unit: mm

HN28F101T Series (TFP-32DA)

Unit: mm

HN28F101R Series (TFP-32DAR)

Unit: mm

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

HITACHI

Hitachi, Ltd.

Semiconductor & IC Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

For further information write to:

Hitachi America, Ltd. Semiconductor & IC Div. 2000 Sierra Point Parkway Brisbane, CA. 94005-1835 U S A Tel: 415-589-8300 Fax: 415-583-4207 Hitachi Europe GmbH Electronic Components Group Continental Europe Dornacher Straße 3 D-85622 Feldkirchen München Tel: 089-9 91 80-0 Fax: 089-9 29 30 00 Hitachi Europe Ltd. Electronic Components Div. Northern Europe Headquarters Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA United Kingdom Tel: 0628-585000 Fax: 0628-778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 0104 Tel: 535-2100 Fax: 535-1533

Hitachi Asia (Hong Kong) Ltd. Unit 706, North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon Hong Kong Tel: 27359218 Fax: 27306071

Revision Record

Rev.	Date	Contents of Modification	Drawn by	Approved by
1.0	Sep. 20, 1990	Initial issue	K. Furusawa	T. Wada
2.0	Dec. 24, 1990	P1 Erasing endurance: 10000 times P3, 4, 17 Addition of 32-pin PLCC package (CP-32) P9 t_{OERS} min: 5/5/5 μ s to 6/6/6 μ s t_{PPW} min: 15/15/15 μ s to 25/25/25 μ s max: 25/25/25 μ s to not specified P11 Change of fast high reliability programming flowchat P13 Change of fast high reliability erase flowchart	K. Furusawa	T. Wada
3.0	Feb. 19, 1991	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	K. Furusawa	T. Wada
4.0	Jun. 20, 1991	Change of type no. HN29C1001B to HN28F101 Change of fast high reliability programing timing waveform	K. Furusawa	T. Wada
5.0	Oct. 20, 1991	$\begin{array}{l} \mbox{Change of Low power dissipation} \\ I_{\rm CC} \mbox{ typ (Read): 30 mA to 10 mA} \\ \mbox{P8, 10 DC Characteristics} \\ \mbox{Change of } I_{\rm CC2} \mbox{ typ: 25 mA to 10 mA} \\ I_{\rm CC2} \mbox{ max: 50 mA to 30 mA} \\ V_{\rm IH} \mbox{ max: V}_{\rm CC} \mbox{ + 1 V to V}_{\rm CC} \mbox{ + 0.3 V} \\ \mbox{AC Characteristics} \\ t_{\rm WEH} \mbox{ min: 20 ns to 40 ns} \\ t_{\rm OEPS} \mbox{ min: 20 ns to 120 ns} \\ \end{array}$	K. Furusawa	T. Wada
6.0	Nov. 25, 1991	P1,3,19 Addition of 32-pin plastic TSOP (TFP-32D) P1,3,19 Addition of 32-pin plastic TSOP (TFP-32DR)	K. Furusawa	T. Wada
7.0	Nov. 11, 1992	Deletion of 32-pin plastic TSOP (TFP-32D) Deletion of 32-pin plastic TSOP (TFP-32DR) Mode selection Addition of pin number (DIP, SOP, PLCC) Addition of pin number (TSOP) Change of notes 5 DC Characteristics Change of I_{SB} , I_{CC3} , I_{PP1} Change of automatic erase timing waveform Addition of notes from P12, P16 AC Characteristics Change of t_{CEH} Change of fast high reliability programming timing waveform Change of fast high reliability programming flowchat Change of erase timing waveform	K. Furusawa	T. Wada

Revision Record (cont.)

Rev.	Date	Contents of Modification	Drawn by	Approved by
7.0	Nov. 11, 1992	Mode Description Addition of pin number (DIP, SOP, PLCC) Addition of pin number (TSOP) Change of notes 1	K. Furusawa	T. Wada
8.0	Aug. 20, 1993	Addition of HN28F101TD Series (TFP-32D) Addition of HN28F101RD Series (TFP-32DR) Change of Read Timing Waveform	K. Izawa	O. Sakai
9.0	Apr. 20, 1994	Deletion of old type name (HN29c101B) DC Characteristics I_{CC3} typ: 9 mA to 2 mA Change of note1 AC Characteristics Addition of t _{VAE} max: 300/300/300 ns t_{AET} min: 0.5/0.5/0.5 s to// s Addition of Erase and program Time Change of Timing Waveform	Y. Mori	K. Furusawa
10.0	Nov. 15, 1996	Change of format Deletion of HN28F101P/CP/TD/DR Series		