

Structure

Silicon Monolithic Integrated Circuit

Product name

FM stereo radio receiver IC for mobile phone

Type

BH1406GU

Features

- · Built-in front end, IF amplifier, FM detector, FM stereo demodulator, and PLL frequency synthesizer
- · No need for external IF filter and external phase shifter for FM detector
- Built-in 32.768kHz crystal oscillator for system clock
- · Mono / stereo blend function, according to change in field strength
- · Adjustment free stereo demodulator
- For 3-wire serial and I²C BUS I/F
- Output of 5-bit digital field strength information via BUS
- Stand-by mode
- · Switch between soft mute and mono / stereo blend functions via BUS
- · Power down of stereo demodulation block by software operation
- · Selection of upper / lower injection of local oscillation via BUS
- · Two software programmable ports (open drain)
- Received Frequency 76 to 108MHz (50kHz step)

OAbsolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit	Conditions		
Supply voltage	Vcc	+5.0	٧	Pin 3, 4, 5, 6, 8, 16, 17, 38, 43, 47		
Data input voltage	VIN-D	-0.3 to Vccif +0.3	٧	Pin 9, 10, 11, 12, 14, 15		
Power dissipation	Pd	490	mW	(*1)		
Storage temperature range	Tstg	-55 to +125	°C			

^{(*1) 114.3}mm × 76.2mm × 1.6mm (Glass epoxy board packaged). In the case of use at Ta= 25°C or more, 4.9mW to be reduced per 1°C.

Status of this document

The Japanese version of this document is the formal specification.

A customer may use this translation version only for a reference to help reading the formal version.

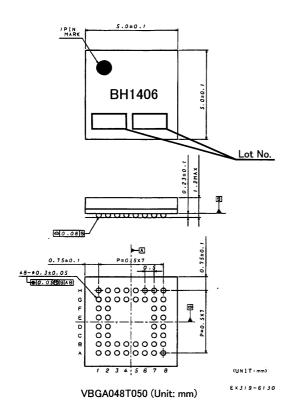
If there are any differences in translation version of this document, formal version takes priority.

OOperating Range

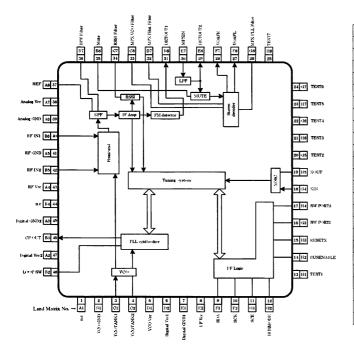
Parameter	Sund at		Limits			Conditions	
	Symbol	Min.	Тур.	Max.	Unit		
Analog supply voltage	Vcca	2.4	2.7	4.0	٧	(*2) (*3)	
Digital supply voltage	Vccd	2.4	2.7	4.0	٧	(*2) (*3)	
I/F supply voltage	Vccif	1.7	1.8	4.0	V	(*2)	
Operating temperature	Та	-20		+85	°C		
Frequency band width	fBAND	76		108	MHz	Step 50kHz	
BUS input High level	Vвін	0.7 × Vccif		Vccif+0.3V	٧	Pin 9, 10, 11, 12, 14, 15	
BUS input Low level	VBIL	GND-0.3V		0.3 × Vccif	٧	Pin 9, 10, 11, 12, 14, 15	

^(*2) Standard operation to be made at Ta= 25°C.

$OElectric\ Characteristics\ (Unless otherwise\ specified,\ Ta=25^{\circ}C,\ Vcc=2.7V,\ fin=98MHz,\ fmod=1kHz,\ \Delta f=\pm75kHz\ Measuring\ Filter=200Hz\sim15kHz)$


Parameter	Symbol	Limits				0. 51	
		Min.	Тур.	Max.	Unit	Conditions	
Supply current	Icc		15.0	18.9	mA	At no input	
Power down mode current	ĪPD		0	1	μA	Reference clock (32.768kHz sleep) Busenable="L"	
Sleep mode current	IsL			50	μА	Reference clock (32.768kHz sleep) Busenable="H"	
Sensitivity	S		9	14	dBµVemf	(S+N)/N=30dB, MONO	
Image rejection ratio	IRR	24			dB		
Signal to noise ratio 1	SNR1	55	60		dB	Vin=65dBµVemf, MONO	
Signal to noise ratio 2	SNR2	50	55		dB	Vin=65dBµVemf, L=R	
Total harmonic distortion	THD		0.5	1.5	%	Vin=65dBµVemf, L=R	
Stereo channel separation	SEP	24	30		dB	Vin=65dBµVemf	
Audio output level	Voa	155	220	310	mVrms	Vin=65dBμVemf, MONO, RL=100kΩ	
Soft mute attenuation amount	ATT	16	26	36	dB	Vin=0dBµVemf	
AM suppression ratio	AMR		59		dB	AM: fmod=400Hz, MOD=30% Vin=65dBµVemf	

[♦] This product is not designed for protection against radioactive rays.


^(*3) Keep the potential difference among power sources 0.3V or below.

OExternal dimension diagram • Marking diagram

OBlock diagram

OPin No. • Pin name

Pin No.	Land Matrix	Pin name	Pin No.	Land Matrix	Pin name
1	A1	N.C.	25	H8	TEST7
2	B1	VCOGND	26	G8	MPXLOFIL
3	C1	VCOTANK1	27	F8	VOAFL
4	C2	VCOTANK2	28	F7	VOAFR
5	D1	vcovcc	29	E8	DETOUT2
6	D2	VCCD1	30	E7	MPXIN
7	E1	DGND1	31	D8	DETOUT1
8	E2	VCCIF	32	D7	MPXPILFIL
9	F1	SDA	33	C8	MPXVCOFIL
10	F2	SCK	34	C7	RSSI
11	G1	SCE	35	B8	MUTE
12	G2	BUSMODE	36	B7	BPFLOFIL
13	H1	TEST1	37	A8	REF
14	H2	BUSENABLE	38	A7	VCCA
15	Н3	RESETX	39	A6	AGND
16	G3	SW PORT1	40	В6	RFI1
17	H4	SW PORT2	41	A5	RFGND
18	G4	XIN	42	B5	RFI2
19	H5	XOUT	43	A4	VCCRF
20	G5	TEST2	44	B4	N.C.
21	H6	TEST3	45	A3	DGND2
22	G6	TEST4	46	В3	CPOUT
23	H7	TEST5	47	A2	VCCD2
24	G 7	TEST6	48	B2	LOOPSW

OCautions on use

(1) Absolute maximum ratings

If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the conditions under which absolute maximum ratings are exceeded to the LSI.

(2) GND potential

Make the GND pin voltage such that it is the lowest voltage even when operating below it. Actually confirm that the voltage of each pin does not become a lower voltage than the GND pin, including transient phenomena.

(3) Thermal design

Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use.

(4) Shorts between pins and misinstallation

When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.

(5) Operation in strong magnetic fields

Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

