Smart High-Side Power Switch
 One Channel: $60 \mathrm{~m} \Omega$
 Status Feedback

Product Summary

On-state Resistance	R_{ON}	$60 \mathrm{~m} \Omega$
Operating Voltage	$\mathrm{V}_{\text {bb(on })}$	$4.75 \ldots . .41 \mathrm{~V}$
Nominal load current	$\mathrm{I}_{\mathrm{L}(\mathrm{NOM})}$	7.0 A
Current limitation	$\mathrm{I}_{\mathrm{LSCr})}$	17 A

Package

General Description

- $\quad \mathrm{N}$ channel vertical power MOSFET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS ${ }^{\circledR}$ technology.
- Providing embedded protective functions

Applications

- $\mu \mathrm{C}$ compatible high-side power switch with diagnostic feedback for $5 \mathrm{~V}, 12 \mathrm{~V}$ and 24 V grounded loads
- All types of resistive, inductive and capacitve loads
- Most suitable for loads with high inrush currents, so as lamps
- Replaces electromechanical relays, fuses and discrete circuits

Basic Functions

- Very low standby current
- CMOS compatible input
- Improved electromagnetic compatibility (EMC)
- Fast demagnetization of inductive loads
- Stable behaviour at undervoltage
- Wide operating voltage range
- Logic ground independent from load ground

Protection Functions

- Short circuit protection
- Overload protection
- Current limitation
- Thermal shutdown
- Overvoltage protection (including load dump) with external resistor
- Reverse battery protection with external resistor
- Loss of ground and loss of V_{bb} protection
- Electrostatic discharge protection (ESD)

Diagnostic Function

- Diagnostic feedback with open drain output
- Open load detection in ON-state
- Feedback of thermal shutdown in ON-state

Block Diagram

Functional diagram

Pin Definitions and Functions

Pin	Symbol	Function
1	GND	Logic ground
2	IN	Input, activates the power switch in case of logical high signal
3	$\mathrm{~V}_{\mathrm{bb}}$	Positive power supply voltage The tab is shorted to pin 3
4	ST	Diagnostic feedback, low on failure
5	OUT	Output to the load
Tab	V_{bb}	Positive power supply voltage The tab is shorted to pin 3

Pin configuration

Maximum Ratings at $T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 4)	$V_{\text {bb }}$	43	V
Supply voltage for full short circuit protection $T_{j \text { Start }}=-40 \ldots+150^{\circ} \mathrm{C}$	$V_{\text {bb }}$	24	V
$\begin{aligned} & \text { Load dump protection } \left.{ }^{1}\right) V_{\text {LoadDump }}=V_{\mathrm{A}}+V_{\mathrm{s}}, V_{\mathrm{A}}=13.5 \mathrm{~V} \\ & \left.R_{\mathrm{I}}^{2}\right)=2 \Omega, R_{\mathrm{L}}=4.0 \Omega, t_{\mathrm{d}}=200 \mathrm{~ms}, \mathrm{IN}=\text { low or high } \end{aligned}$	$V_{\text {Load dump }}{ }^{3}$,	60	V
Load current (Current limit, see page 5)	${ }_{L}$	self-limited	A
Operating temperature range	$T_{\text {j }}$	-40 ...+150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-55 ... +150	
Power dissipation (DC), $\mathrm{T}_{\mathrm{C}} \leq 25^{\circ} \mathrm{C}$	$P_{\text {tot }}$	75	W
Maximal switchable inductance, single pulse $V_{b b}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}, \text { start }}=150^{\circ} \mathrm{C}, \mathrm{TC}=150^{\circ} \mathrm{C}$ const. (See diagram on page 9) $\left.\quad I_{\mathrm{L}(I S O)}=7 \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=0 \Omega ; \mathrm{E}^{4}\right)_{\mathrm{AS}}=0.19 \mathrm{~J}$:	Z_{L}	5.6	mH
Electrostatic discharge capability (ESD) IN: (Human Body Model) out to all other pins shorted: acc. MLL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993; $R=1.5 \mathrm{k} \Omega ; \mathrm{C}=100 \mathrm{pF}$	$V_{\text {ESD }}$	1.0 4.0 8.0	kV
Input voltage (DC)	$V_{\text {IN }}$	-10 ... +16	V
Current through input pin (DC)	$I_{\text {IN }}$	± 2.0	mA
Current through status pin (DC) see internal circuit diagrams page 8	$I_{\text {ST }}$	± 5.0	

Thermal Characteristics

Parameter and Conditions		Symbol	Values			Unit	
		min	typ	max			
Thermal resistance	$\begin{array}{r} \text { chip - case: } \\ \text { junction - ambient (free air): } \\ \text { device on pc55 }): ~ \end{array}$		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { thJc } \\ R_{\text {thJA }} \end{array} \\ \hline \end{array}$	-- -- -	42	1.67 75	K/W

${ }^{1}$) Supply voltages higher than $\mathrm{V}_{\mathrm{bb}(\mathrm{AZ})}$ require an external current limit for the GND and status pins (a 150Ω resistor for the GND connection is recommended).
${ }^{2}$) $\quad R_{I}=$ internal resistance of the load dump test pulse generator
${ }^{3}$) V ${ }^{4}$ Load dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839
${ }^{4}$) $E_{A S}$ is the maximum inductive switch-off energy
${ }^{5}$) Device on $50 \mathrm{~mm} * 50 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with $6 \mathrm{~cm}^{2}$ (one layer, $70 \mu \mathrm{~m}$ thick) copper area for V_{bb} connection. PCB is vertical without blown air.
technologies

Electrical Characteristics

Parameter and Conditions

at $T_{j}=-40 \ldots+150^{\circ} \mathrm{C}, V_{\mathrm{bb}}=12 \mathrm{~V}$ unless otherwise specified

Symbol	Values			Unit
	\min	typ	\max	

Load Switching Capabilities and Characteristics

On-state resistance (pin 3 to 5) $\begin{array}{lr} \mathrm{L}=2 \mathrm{~A} ; \mathrm{V}_{\mathrm{BB}} \geq 7 \mathrm{~V} & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}: \\ \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}: \\ \hline \text { see diagram, page } 10 & \\ \hline \end{array}$	Ron	--	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{array}{r} 60 \\ 120 \end{array}$	$\mathrm{m} \Omega$
Nominal load current, (pin 3 to 5) ISO 10483-1, 6.7: $\mathrm{V}_{\mathrm{ON}}=0.5 \mathrm{~V}, T_{\mathrm{C}}=85^{\circ} \mathrm{C}$	$I_{\text {LIISO) }}$	5.8	7.0	--	A
Output current (pin 5) while GND disconnected or GND pulled $u p^{6}$), $V_{b b}=30 V, V_{I N}=0$, see diagram page 8	$I_{\text {L(GNDhigh) }}$	--	--	2	mA
Turn-on time IN - to $90 \% V_{\text {Out }}$:	$t_{\text {on }}$	30	100	200	$\mu \mathrm{s}$
Turn-off time IN 7 to $10 \% V_{\text {OUт }}$: $R_{\mathrm{L}}=12 \Omega$,	$t_{\text {off }}$	30	100	200	
Slew rate on 10 to $30 \% V_{\text {OUT, }} R_{\mathrm{L}}=12 \Omega$,	$\mathrm{d} V / \mathrm{dt}_{\text {on }}$	0.1	--	1	$\mathrm{V} / \mathrm{\mu s}$
Slew rate off 70 to $40 \% V_{\text {OUT, }} R_{\mathrm{L}}=12 \Omega$,	-dV/dt ${ }_{\text {off }}$	0.1	--	1	$\mathrm{V} / \mu \mathrm{s}$

Operating Parameters

Operating voltage $\begin{array}{r}\text { a } \\ \\ T_{\mathrm{j}}=+25 \ldots+150^{\circ} \mathrm{C}:\end{array}$	$V_{\text {bb(on) }}$	4.75	--	41 43	V
Overvoltage protection $I_{\mathrm{bb}}=40 \mathrm{~mA}$ $T_{\mathrm{j}}=-40^{\circ} \mathrm{C}:$ $T_{\mathrm{j}}=25 \ldots+150^{\circ} \mathrm{C}:$.	$V_{\text {bb(AZ) }}$	$\begin{aligned} & 41 \\ & 43 \end{aligned}$	47	52	V
Standby current $(\text { pin } 3)^{8)}$ $T_{\mathrm{j}}=-40 \ldots+25^{\circ} \mathrm{C}:$ $V_{\mathrm{IN}}=0$; see diagram on page 10 $T_{\mathrm{j}}=150^{\circ} \mathrm{C}$:	$\mathrm{I}_{\mathrm{bb} \text { (off) }}$	--	5	$\begin{array}{r}9 \\ 25 \\ \hline\end{array}$	$\mu \mathrm{A}$
Off-State output current (included in $I_{\mathrm{bb}(\text { (off) })}$ $V \operatorname{IN}=0$	$I_{L \text { (off) }}$	--	1	10	$\mu \mathrm{A}$
Operating current ${ }^{9}$, $V_{\text {IN }}=5 \mathrm{~V}$	$I_{\text {GND }}$	--	0.8	1.5	mA

[^0]BTS428L2
Parameter and Conditions
at $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, V_{\mathrm{bb}}=12 \mathrm{~V}$ unless otherwise specified

Symbol	Values			Unit
	\min	typ	\max	

Protection Functions ${ }^{10}$)

Current limit (pin 3 to 5) (see timing diagrams on page 12) $T_{j}=-40^{\circ} \mathrm{C}:$ $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$ $T_{\mathrm{j}}=+150^{\circ} \mathrm{C}:$	$I_{\text {L(lim) }}$	$\begin{aligned} & 21 \\ & 17 \\ & 12 \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \\ & 16 \end{aligned}$	$\begin{array}{r} 36 \\ 31 \\ 24 \\ \hline \end{array}$	A
Repetitive short circuit shutdown current limit $T_{\mathrm{j}}=T_{\mathrm{jt}} \quad(\text { see timing diagrams, page } 12)$	L (SCr)	--	17	--	A
Thermal shutdown time ${ }^{11}$ (see timing diagrams on page 12)$\quad T_{\mathrm{j}, \text { start }}=25^{\circ} \mathrm{C}$:	$t_{\text {off(}}$ (SC)	--	7.5	--	ms
Output clamp (inductive load switch off) at $V_{\text {OUT }}=V_{\text {bb }}-V_{\text {ON(CL) }} \quad I_{\mathrm{L}}=40 \mathrm{~mA}$:	$\mathrm{V}_{\mathrm{ON}(\mathrm{CL})}$	$\begin{aligned} & \hline 41 \\ & 43 \end{aligned}$	47	52	V
Thermal overload trip temperature	$T_{\text {jt }}$	150	--	--	${ }^{\circ} \mathrm{C}$
Thermal hysteresis	$\Delta T_{\text {jt }}$	--	10	--	K
Reverse battery (pin 3 to 1) ${ }^{12}$)	$-V_{\mathrm{bb}}$	--	--	32	V
$\begin{aligned} & \text { Reverse battery voltage drop } \left.\left(\mathrm{V}_{\text {out }}>\mathrm{V}_{\mathrm{bb}}\right)^{13}\right) \\ & \mathrm{T}_{\mathrm{L}}=-2 \mathrm{~A} \end{aligned}$	$-V_{\text {ON(rev }}$	--	600	--	mV

Diagnostic Characteristics

Open load detection current (on-condition)	$I_{\mathrm{L}(\mathrm{OL})}$	10	--	500	mA

[^1]| Parameter and Conditions | Symbol | Values | | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at $T_{j}=-40 \ldots+150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}$ unless otherwise specified | | min | typ | max | |

Input and Status Feedback ${ }^{14}$)

Input resistance see circuit page 8	R_{1}	2.5	3.5	6	k Ω
Input turn-on threshold voltage _-	$V_{1 N(T+)}$	1.7	--	3.2	V
Input turn-off threshold voltage	$V_{1 N(T-)}$	1.5	--	--	V
Input threshold hysteresis	$\Delta V_{\text {IN(T) }}$	--	0.5	--	V
Off state input current (pin 2), $V_{\text {IN }}=0.4 \mathrm{~V}$	$I_{1 N(\text { off }}$	1	--	50	$\mu \mathrm{A}$
On state input current (pin 2), $V_{\text {IN }}=5 \mathrm{~V}$	$1{ }_{1}($ (on $)$	20	50	90	$\mu \mathrm{A}$
Delay time for status with open load after switch off (see timing diagrams on page 12)	$t_{\text {d(ST OL4) }}$	100	520	900	$\mu \mathrm{s}$
Status output (open drain) Zener limit voltage $I_{\mathrm{ST}}=+1.6 \mathrm{~mA}:$ ST low voltage $I_{\mathrm{ST}}=+1.6 \mathrm{~mA}$:	$V_{\text {ST (high) }}$ $V_{\text {ST (Iow) }}$	5.4	6.1	0.4	V

${ }^{14)}$ If a ground resistor $R_{G N D}$ is used, add the voltage drop across this resistor.

Truth Table

	Input level	Output level	Status BTS 428L2
Normal	L	L	H
operation	H	H	H
Open load	L	Z	H
	H	H	L
Overtem-	L	L	H
perature	H	L	L

[^2]
Terms

Input circuit (ESD protection)

The use of ESD zener diodes as voltage clamp at DC conditions is not recommended

Status output

ESD-Zener diode: 6.1 V typ., max 5.0 mA ; RST(ON) $<375 \Omega$ at 1.6 mA . The use of ESD zener diodes as voltage clamp at DC conditions is not recommended.

Inductive and overvoltage output clamp

Von clamped to 47 V typ.

Overvolt. and reverse batt. protection

$V_{\mathrm{Z} 1}=6.1 \mathrm{~V}$ typ., $V_{\mathrm{Z} 2}=47 \mathrm{~V}$ typ., $R_{\mathrm{GND}}=150 \Omega$, $R_{\mathrm{ST}}=15 \mathrm{k} \Omega, R_{\mathrm{I}}=3.5 \mathrm{k} \Omega$ typ.
In case of reverse battery the load current has to be limited by the load. Temperature protection is not active

Open-load detection in on-state
Open load, if $V_{\mathrm{ON}}<\mathrm{RoN}_{\mathrm{ON}} \cdot \mathrm{I}_{\mathrm{L}(\mathrm{OL}) \text {; }} \mathrm{IN}$ high

GND disconnect

Any kind of load. In case of Input=high is $V_{O U T} \approx V_{\text {IN }}-V_{\text {IN }(T+)}$. Due to $\mathrm{V}_{\mathrm{GND}}>0$, no $\mathrm{V}_{\mathrm{ST}}=$ low signal available.

BTS428L2

GND disconnect with GND pull up

Any kind of load. If $\mathrm{V}_{\mathrm{GND}}>\mathrm{V}_{\mathrm{IN}}-V_{\mathrm{IN}(\mathrm{T}+)}$ device stays off Due to $\mathrm{V}_{\mathrm{GND}}>0$, no $\mathrm{V}_{\mathrm{ST}}=$ low signal available.

Vbb disconnect with energized inductive load

For inductive load currents up to the limits defined by Z_{L} (max. ratings and diagram on page 9) each switch is protected against loss of V_{bb}.
Consider at your PCB layout that in the case of Vbb disconnection with energized inductive load all the load current flows through the GND connection.

Inductive Load switch-off energy dissipation

Energy stored in load inductance:

$$
E_{\mathrm{L}}=1 /\left.2 \cdot L \cdot\right|_{\mathrm{L}} ^{2}
$$

While demagnetizing load inductance, the energy dissipated in PROFET is

$$
E_{A S}=E_{b b}+E_{L}-E_{R}=\quad V_{O N(C L)} \cdot i_{L}(t) d t
$$

with an approximate solution for $R_{L}>0 \Omega$:

$$
E_{A S}=\frac{\mathrm{I}_{\mathrm{L}} \cdot \mathrm{~L}}{2 \cdot R_{\mathrm{L}}} \cdot\left(\mathrm{~V}_{\mathrm{bb}}+\left|\mathrm{V}_{\mathrm{OUT}(\mathrm{CL})}\right|\right) \cdot \ln \left(1+\frac{\mathrm{I}_{\mathrm{L}} \cdot R_{\mathrm{L}}}{\left|\mathrm{~V}_{\mathrm{OUT}(\mathrm{CL})}\right|}\right)
$$

Maximum allowable load inductance for

 a single switch off$L=f\left(I_{\mathrm{L}}\right) ; T_{\mathrm{j}, \text { start }}=150^{\circ} \mathrm{C}, T_{\mathrm{C}}=150^{\circ} \mathrm{C}$ const., $V_{\mathrm{bb}}=12 \mathrm{~V}, R_{\mathrm{L}}=0 \Omega$
$Z_{L}[\mathrm{mH}]$

Typ. on-state resistance

$$
\boldsymbol{R O N}=\boldsymbol{f}\left(V_{b \boldsymbol{b}}, \boldsymbol{T}_{\boldsymbol{j}}\right) ; \quad \operatorname{IL}=2 \mathrm{~A}, \quad \mathbb{N}=\text { high }
$$

$\mathrm{R}_{\mathrm{on}}[\mathrm{m} \Omega$]

Typ. standby current
$\boldsymbol{I}_{\text {bl }}($ off $)=\boldsymbol{f}\left(\boldsymbol{T}_{\boldsymbol{j}}\right) ; \mathrm{V}_{\mathrm{bb}}=9 \ldots 34 \mathrm{~V}, \mathrm{IN} 1,2=$ low

Timing diagrams

Figure 1a: V_{bb} turn on:

ST open drain

proper turn on under all conditions

Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition:

Figure 2b: Switching a lamp,

Figure 2c: Switching an inductive load

*) if the time constant of load is too large, open-load-status may occur

Figure 3a: Short circuit
shut down by overtemperature, reset by cooling

Heating up of the chip may require several milliseconds, depending on external conditions

Figure 4a: Overtemperature:
Reset if $T_{\mathrm{j}}<T_{\mathrm{jt}}$

Figure 5a: Open load: detection in ON-state, open load occurs in on-state

$\mathrm{t}_{\mathrm{d}(\mathrm{ST} \text { OL) }}=10 \mu \mathrm{~s}$ typ.

Figure 5b: Open load: turn on/off to open load

Package and Ordering Code

All dimensions in mm
Dpak-5 Pin: P-TO252-5-11

Sales code	BTS428L2
Ordering code	Q67060-S7403-A2

1) Includes mold flashes on each side. All metal surfaces tin plated, except area of cut.

Published by Infineon Technologies AG,
 St.-Martin-Strasse 53,
 D-81669 München
 © Infineon Technologies AG 2001
 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in lifesupport devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: ${ }^{6}$) not subject to production test, specified by design
 ${ }^{7}$) Supply voltages higher than $\mathrm{V}_{\mathrm{bb}(\mathrm{AZ})}$ require an external current limit for the GND and status pins (a 150Ω resistor for the GND connection is recommended. See also $V_{O N(C L) ~ i n ~ t a b l e ~ o f ~ p r o t e c t i o n ~ f u n c t i o n s ~ a n d ~}^{\text {an }}$ circuit diagram page 8.
 ${ }^{8}$) Measured with load
 ${ }^{9}$ Add $I_{S T}$, if $I_{\mathrm{ST}}>0$, add I_{IN}, if $V_{\mathrm{IN}}>5.5 \mathrm{~V}$

[^1]: ${ }^{10}$) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.
 ${ }^{11}$) Device on $50 \mathrm{~mm} * 50 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with $6 \mathrm{~cm}^{2}$ (one layer, $70 \mu \mathrm{~m}$ thick) copper area for V_{bb} connection. PCB is vertical without blown air.
 ${ }^{12}$) Requires 150Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 3 and circuit page 8).
 ${ }^{13}$) not subject to production test, specified by design

[^2]: L = "Low" Level
 H = "High" Level
 X = don't care
 $\mathrm{Z}=$ high impedance, potential depends on external circuit Status signal after the time delay shown in the diagrams (see fig 5. page 12)

