DATA SHEET

MOS INTEGRATED CIRCUIT μ PD444012L-X

4M-BIT CMOS STATIC RAM 256K-WORD BY 16-BIT EXTENDED TEMPERATURE OPERATION

Description

The μ PD444012L-X is a high speed, low power, 4,194,304 bits (262,144 words by 16 bits) CMOS static RAM. The μ PD444012L-X has two chip enable pins (/CE1, CE2) to extend the capacity.

The μ PD444012L-X is packed in 48-pin plastic TSOP (I) (Normal bent).

Features

- 262,144 words by 16 bits organization
- Fast access time: 70, 85, 100, 120, 150, 200 ns (MAX.)
- Byte data control: /LB (I/O1 I/O8), /UB (I/O9 I/O16)
- Low voltage operation (B version: Vcc = 2.7 to 3.6 V, C version: Vcc = 2.2 to 3.6 V, D version: Vcc = 1.8 to 3.6 V)
 - Low Vcc data retention (B version: 2.0 V (MIN.), C version: 1.5 V (MIN.), D version: 1.5 V (MIN.))
 - Operating ambient temperature: TA = -25 to +85 °C
 - Output Enable input for easy application
 - Two Chip Enable inputs: /CE1, CE2

Part number	Access time	Operating supply	Operating ambient		Supply current				
	ns (MAX.)	voltage	temperature	At operating	At standby	At data retention			
		V	°C	mA (MAX.)	μΑ (MAX.)	μΑ (MAX.)			
μPD444012L-BxxX	70, 85	2.7 to 3.6	-25 to +85	40	7	7			
μPD444012L-CxxX	100, 120	2.2 to 3.6							
μPD444012L-DxxX ^{Note}	150, 200	1.8 to 3.6							

Note Under development

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

Document No. M13961EJ5V0DS00 (5th edition) Date Published July 2000 NS CP (K) Printed in Japan

The mark **★** shows major revised points.

* Ordering Information

Part number	Package	Access time	Operating	Operating	Remark
		ns (MAX.)	supply voltage	temperature	
			V	°C	
μPD444012LGY-B70X-MJH	48-PIN PLASTIC TSOP (I)	70	2.7 to 3.6	–25 to +85	B version
μPD444012LGY-B85X-MJH	(12×18) (Normal bent)	85			
μPD444012LGY-C10X-MJH		100	2.2 to 3.6		C version
μPD444012LGY-C12X-MJH		120			
μ PD444012LGY-D15X-MJH ^{Note}		150	1.8 to 3.6		D version
μPD444012LGY-D20X-MJH ^{Note}		200			

Note Under development

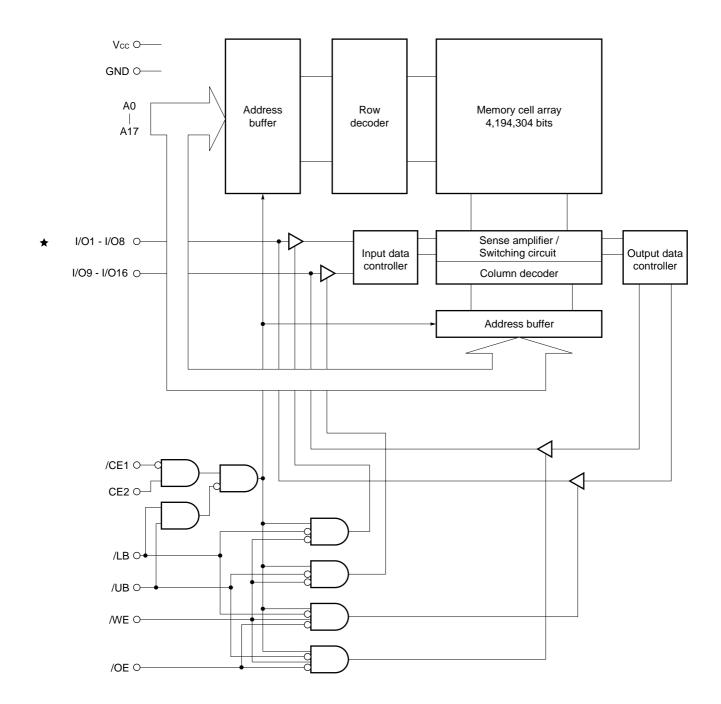
* Pin Configuration (Marking Side)

/xxx indicates active low signal.

48-PIN PLASTIC TSOP (I) (12×18) (Normal bent)

[μPD444012LGY-BxxX-MJH] [μPD444012LGY-CxxX-MJH] [μPD444012LGY-DxxX-MJH]

		-
A15 O►	1 48	A16
A14 O►	2 47	
A13 ○>	3 46	
A12 O→	4 45	
A11 O>	5 44	- → ○ I/O8
A10 ○	6 43	
A9 ○>	7 42	
A8 ○>	8 41	←→ ○ I/014
NC O	9 40	-
NC O	10 39	←→ ○ I/013
/WE ○>	11 38	
CE2 O	12 37	
IC O	13 36	<u> </u>
/UB ○──►	14 35	
/LB ○>	15 34	
NC O	16 33	←→ ○ I/O3
A17 O>	17 32	
A7 O►	18 31	←→ ○ I/O2
A6 O►	19 30	←→ ○ I/O9
A5 ○	20 29	←→ ○ I/01
A4 O►	21 28	○ /OE
A3 ○>	22 27	
A2 ○>	23 26	-
A1 O►	24 25	


A0 - A17	:	Address inputs
I/O1 - I/O16	:	Data inputs / outputs
/CE1, CE2	:	Chip Enable 1, 2
/WE	:	Write Enable
/OE	:	Output Enable
/LB, /UB	:	Byte data select
Vcc	:	Power supply
GND	:	Ground
NC	:	No Connection
IC Note	:	Internal Connection

Note Leave this pin unconnected or connect to GND.

Remark Refer to **Package Drawing** for the 1-pin index mark.

Block Diagram

NEC

Truth Table

/CE1	CE2	/OE	/WE	/LB	/UB	Mode	/ا	0	Supply current
							I/O1 - I/O8	I/O9 - I/O16	
н	×	×	×	×	×	Not selected	High impedance	High impedance	lsв
×	L	×	×	×	×				
L	Н	Н	Н	×	×	Output disable	High impedance	High impedance	ICCA
		L	Н	L	L	Word read	Dout	Dout	
				L	Н	Lower byte read	Dout	High impedance	
				Н	L	Upper byte read	High impedance	Dout	
		×	L	L	L	Word write	DIN	DIN	
				L	н	Lower byte write	DIN	High impedance	
				Н	L	Upper byte write	High impedance	DIN	
×	×	×	×	Н	Н	Not selected	High impedance High impedance		lsв

 \star

Remark ×: VIH or VIL

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Product	Rating	Unit
Supply voltage	Vcc		-0.5 ^{Note} to +4.0	V
Input / Output voltage	Vτ		-0.5 ^{Note} to Vcc + 0.4 (4.0 V MAX.)	V
Operating ambient temperature	TA		-25 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

Note -3.0 V (MIN.) (Pulse width : 30 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	μPD4440	12L-BxxX	μPD4440	12L-CxxX	μPD4440	Unit	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Supply voltage	Vcc		2.7	3.6	2.2	3.6	1.8	3.6	V
High level input voltage	Vін	$2.7~\text{V} \leq \text{Vcc} \leq 3.6~\text{V}$	2.4	Vcc + 0.4	2.4	Vcc+0.4	2.4	Vcc + 0.4	V
		$2.2 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	-	2.0	Vcc + 0.3	2.0	Vcc + 0.3	
		$1.8 \text{ V} \le \text{Vcc} < 2.2 \text{ V}$	-	-	-	-	1.6	Vcc + 0.2	
Low level input voltage	VIL		-0.3 ^{Note}	+0.5	-0.3 ^{Note}	+0.3	-0.3 ^{Note}	+0.2	V
Operating ambient temperature	TA		-25	+85	-25	+85	-25	+85	°C

Note -1.5 V (MIN.) (Pulse width: 30 ns)

Capacitance (T_A = 25 °C, f = 1 MHz)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	$V_{IN} = 0 V$			8	pF
Input / Output capacitance	Ci/o	Vi/o = 0 V			10	pF

Remarks 1. VIN : Input voltage

VI/o : Input / Output voltage

2. These parameters are periodically sampled and not 100% tested.

Parameter	Symbol	Test condition	on	Vc	c ≥ 2.7	7 V	Vc	c ≥ 2.2	2 V	Vo	Unit		
				μPD4	44012L	-BxxX	μPD44	44012L	-CxxX	μPD444012L-DxxX			
				MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input leakage	lu	$V_{IN} = 0 V \text{ to } V_{CC}$		-1.0		+1.0	-1.0		+1.0	-1.0		+1.0	μA
current													
I/O leakage	Ilo	$V_{I/O} = 0 V$ to V_{CC} , /CE1	= Viн or	-1.0		+1.0	-1.0		+1.0	-1.0		+1.0	μΑ
current		$CE2 = V_{IL} \text{ or } /WE = V_{IL}$	or /OE = VIH										
Operating	ICCA1	/CE1 = VIL, CE2 = VIH,				40		-	40		-	40	mA
supply current		Minimum cycle time,	$Vcc \leq 2.7 \ V$		-	-		-	38		-	38	
		Ii/o = 0 mA	$Vcc \leq 2.2 \ V$		-	-		-	_		-	35	
	ICCA2	/CE1 = VIL, CE2 = VIH,			-	10		-	10		-	10	
		$I_{VO} = 0 \text{ mA}$	$Vcc \le 2.7 V$		-	-		-	8		-	8	
			$Vcc \le 2.2 V$		-	-		-	-		-	6	
	Іссаз	$/CE1 \le 0.2 \text{ V}, \text{ CE2} \ge \text{V}_{0}$	c − 0.2 V,		-	8		-	8		-	8	
		Cycle = 1 MHz, I _{I/0} = 0	mA,										
	$V_{IL} \leq 0.2 V$,				-	-		-	6		-	6	
		$V_{\text{IH}} \geq V_{\text{CC}} - 0.2 \ V$	$Vcc \le 2.2 V$			-		-	-		-	6	
Standby	lsв	/CE1 = VIH or CE2 = VIL	or		-	0.6		-	0.6		-	0.6	mA
supply current		$/LB = /UB = V_{IH},$	$Vcc \leq 2.7 \ V$		-	-		-	0.6		-	0.6	
		/CE1, CE2 = VIH or VIL	$Vcc \leq 2.2 \ V$		-	-		-	-		-	0.6	
	ISB1	$/CE1 \ge Vcc - 0.2 V$,			0.5	7		0.5	7		0.5	7	μA
		$CE2 \geq Vcc - 0.2 \; V$	$Vcc \leq 2.7 \ V$		-	-		0.4	6		0.4	6	
			$Vcc \leq 2.2 \ V$		-	-		-	_		0.3	5	
	ISB2	$CE2 \leq 0.2 \ V$			0.5	7		0.5	7		0.5	7	
			$Vcc \leq 2.7 \ V$		-	-		0.4	6		0.4	6	
			$Vcc \leq 2.2 \ V$		-	-		-	-		0.3	5	
	Isb3	$/LB = /UB \ge Vcc - 0.2 V$,		0.5	7		0.5	7		0.5	7	
		$/CE1 \leq 0.2 V,$	$Vcc \leq 2.7 \ V$		-	-		0.4	6		0.4	6	
		$CE2 \geq Vcc - 0.2 \; V$	$Vcc \leq 2.2 \ V$		-	-		-	-		0.3	5	
High level	Vон	Іон = -0.5 mA		2.4			2.4			2.4			V
output voltage			$Vcc \leq 2.7 \ V$	-			1.8			1.8			
			$Vcc \leq 2.2 \ V$	-			-			1.5			
Low level	Vol	lo _L = 1.0 mA				0.4			0.4			0.4	V
output voltage													

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

Remarks 1. VIN : Input voltage

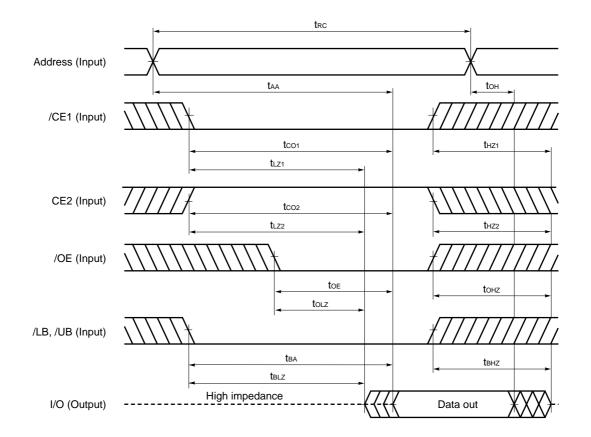
Vi/o : Input / Output voltage

 $\label{eq:characteristics} \textbf{2.} \ \ \textbf{These DC characteristics are in common regardless of access time.}$

AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

AC Test Conditions [µPD444012L-B70X, µPD444012L-B85X] Input Waveform (Rise and Fall Time \leq 5 ns) 2.4 V -1.5 V 🚽 Test points - 1.5 V 0.5 V -**Output Waveform** 1.5 V 🔫 Test points — - 1.5 V **Output Load** 1TTL + 50 pF [µPD444012L-C10X, µPD444012L-C12X] Input Waveform (Rise and Fall Time \leq 5 ns) 2.0 V — 1.1 V 🔫 Test points **-** 1.1 V 0.3 V -**Output Waveform** 1.1 V 🔫 Test points - 1.1 V **Output Load** 1TTL + 30 pF [*µ*PD444012L-D15X, *µ*PD444012L-D20X] Input Waveform (Rise and Fall Time \leq 5 ns) 1.6 V — 0.9 V 🚽 - Test points - 0.9 V 0.2 V — **Output Waveform** 0.9 V 🗕 — Test Points -- 0.9 V **Output Load** 1TTL + 30 pF 8 Data Sheet M13961EJ5V0DS00

Read Cycle


Parameter	Symbol		Vcc≥	2.7 V			Vcc ≥	2.2 V			Vcc≥	1.8 V		Unit	Condition
			PD444012L µPD444012 -B70X -B85X				44012L 10X		44012L 12X	μPD444012L -D15X		μPD444012L -D20X			
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read cycle time	trc	70		85		100		120		150		200		ns	
Address access time	taa		70		85		100		120		150		200	ns	Note 1
/CE1 access time	tco1		70		85		100		120		150		200	ns	
CE2 access time	tco2		70		85		100		120		150		200	ns	
/OE to output valid	toe		35		40		50		60		70		100	ns	
/LB, /UB to output valid	tва		70		85		100		120		150		200	ns	
Output hold from address change	tон	10		10		10		10		10		10		ns	
/CE1 to output in low impedance	t∟z1	10		10		10		10		10		10		ns	Note 2
CE2 to output in low impedance	tLZ2	10		10		10		10		10		10		ns	
/OE to output in low impedance	toLz	5		5		5		5		5		5		ns	
/LB, /UB to output in low impedance	tBLZ	10		10		10		10		10		10		ns	
/CE1 to output in high impedance	tHZ1		25		30		35		40		50		70	ns	
CE2 to output in high impedance	tHZ2		25		30		35		40		50		70	ns	
/OE to output in high impedance	tонz		25		30		35		40		50		70	ns	
/LB, /UB to output in high impedance	tвнz		25		30		35		40		50		70	ns	

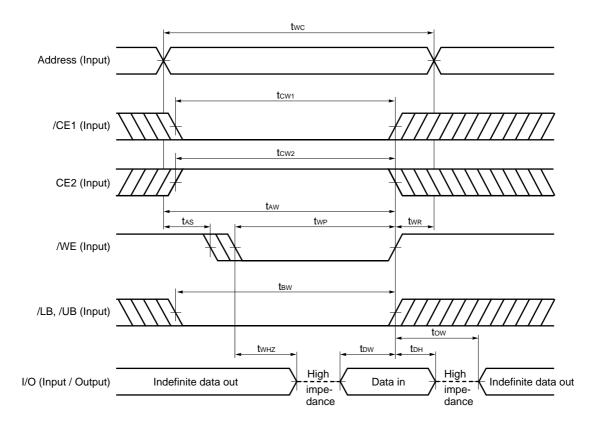
Notes 1. The output load is $1TTL + 50 \text{ pF} (\mu \text{PD444012L-BxxX})$ or $1TTL + 30 \text{ pF} (\mu \text{PD444012L-CxxX}, -DxxX)$.

2. The output load is 1TTL + 5 pF.

Read Cycle Timing Chart

NEC

Remark In read cycle, /WE should be fixed to high level.

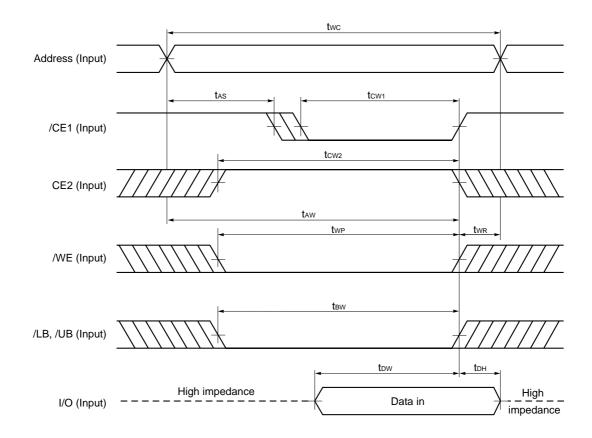

Data Sheet M13961EJ5V0DS00

Write Cycle

Parameter	Symbol		Vcc≥	2.7 V			Vcc ≥	2.2 V			Vcc ≥	1.8 V		Unit	Condition
			14012L 70X		uPD444012L) -B85X		4012L 0X	μPD444012L -C12X		μPD444012L -D15X		μPD444012L -D20X			
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	70		85		100		120		150		200		ns	
/CE1 to end of write	tcw1	55		70		80		100		120		160		ns	
CE2 to end of write	tcw2	55		70		80		100		120		160		ns	
/LB, /UB to end of write	tвw	55		70		80		100		120		160		ns	
Address valid to end of write	taw	55		70		80		100		120		160		ns	
Address setup time	tas	0		0		0		0		0		0		ns	
Write pulse width	twp	50		55		60		85		100		140		ns	
Write recovery time	twr	0		0		0		0		0		0		ns	
Data valid to end of write	tow	30		35		40		60		80		100		ns	
Data hold time	tон	0		0		0		0		0		0		ns	
/WE to output in high impedance	twнz		25		30		35		40		50		70	ns	Note
Output active from end of write	tow	5		5		5		5		5		5		ns	

Note The output load is 1TTL + 5 pF.

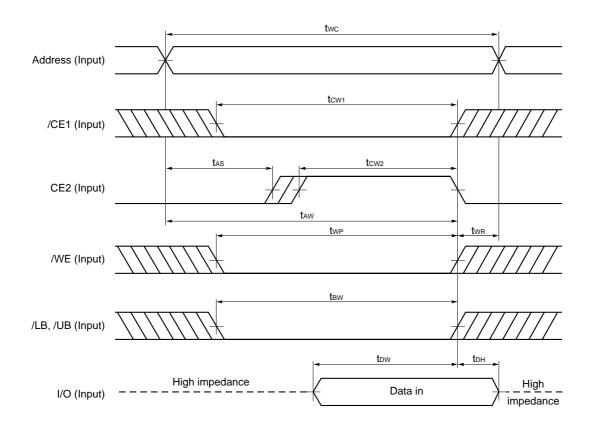
Write Cycle Timing Chart 1 (/WE Controlled)


Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.2. Do not input data to the I/O pins while they are in the output state.

- **Remarks 1.** Write operation is done during the overlap time of a low level /CE1, /WE, /LB and/or /UB, and a high level CE2.
 - 2. If /CE1 changes to low level at the same time or after the change of /WE to low level, or if CE2 changes to high level at the same time or after the change of /WE to low level, the I/O pins will remain high impedance state.
 - **3.** When /WE is at low level, the I/O pins are always high impedance. When /WE is at high level, read operation is executed. Therefore /OE should be at high level to make the I/O pins high impedance.

*

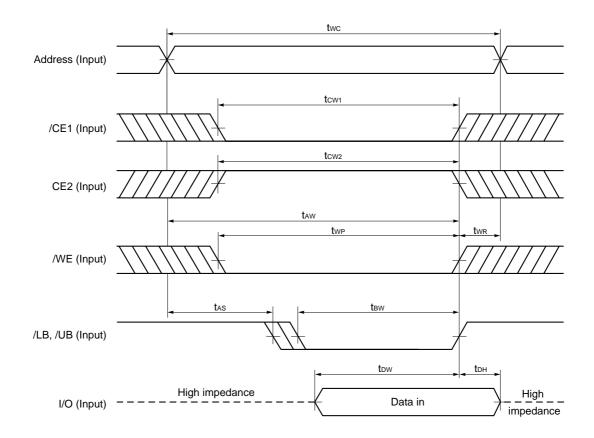
*


Write Cycle Timing Chart 2 (/CE1 Controlled)

Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.

- 2. Do not input data to the I/O pins while they are in the output state.
- **Remark** Write operation is done during the overlap time of a low level /CE1, /WE, /LB and/or /UB, and a high level CE2.

Write Cycle Timing Chart 3 (CE2 Controlled)


Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.2. Do not input data to the I/O pins while they are in the output state.

Remark Write operation is done during the overlap time of a low level /CE1, /WE, /LB and/or /UB, and a high level CE2.

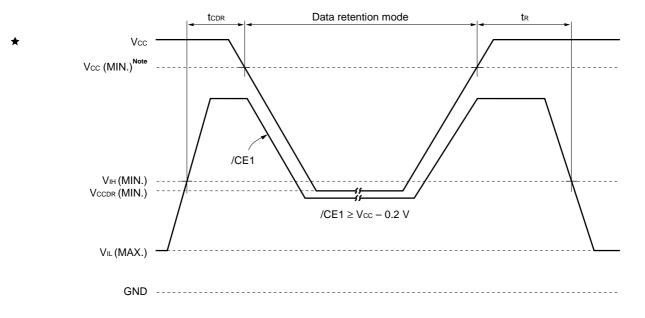
 \star

4

Write Cycle Timing Chart 4 (/LB, /UB Controlled)

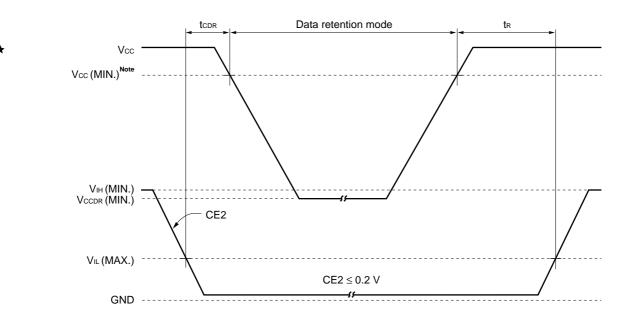
Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.2. Do not input data to the I/O pins while they are in the output state.

Remark Write operation is done during the overlap time of a low level /CE1, /WE, /LB and/or /UB, and a high level CE2.


Parameter	Symbol	Test Condition	Vo	c ≥ 2.7	7 V	Vc	c ≥ 2 .2	2 V	Vc	c≥1.8	8 V	Unit
				D4440 -B××X			⊃4440 -C××X		μPI			
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Data retention supply voltage	VCCDR1	$\label{eq:cell} \begin{array}{l} /CE1 \geq V_{CC} - 0.2 \ V, \\ CE2 \geq V_{CC} - 0.2 \ V \end{array}$	2.0		3.6	1.5		3.6	1.5		3.6	V
	VCCDR2	$CE2 \le 0.2 V$	2.0		3.6	1.5		3.6	1.5		3.6	
	VCCDR3	$\label{eq:LB} \begin{split} /LB &= /UB \geq V_{CC} - 0.2 \ V, \\ /CE1 \leq 0.2 \ V, \ CE2 \geq V_{CC} - 0.2 \ V \end{split}$	2.0		3.6	1.5		3.6	1.5		3.6	
Data retention supply current	ICCDR1	$\label{eq:Vcc} \begin{array}{l} V_{CC} = 3.0 \ \text{V}, \ /\text{CE1} \geq V_{CC} - 0.2 \ \text{V}, \\ \text{CE2} \geq V_{CC} - 0.2 \ \text{V} \ \text{or} \ \text{CE2} \leq 0.2 \ \text{V} \end{array}$		0.5	7		0.5	7		0.5	7	μA
	ICCDR2	Vcc = 3.0 V, CE2 \leq 0.2 V		0.5	7		0.5	7		0.5	7	
	ICCDR3	$V_{CC} = 3.0 \text{ V}, \ \text{/LB} = \text{/UB} \ge V_{CC} - 0.2 \text{ V}, \\ \text{/CE1} \le 0.2 \text{ V}, \ \text{CE2} \ge V_{CC} - 0.2 \text{ V}$		0.5	7		0.5	7		0.5	7	
Chip deselection to data retention mode	tcdr		0			0			0			ns
Operation recovery time	tR		trc ^{Note}			trc ^{Note}			trc ^{Note}			ns

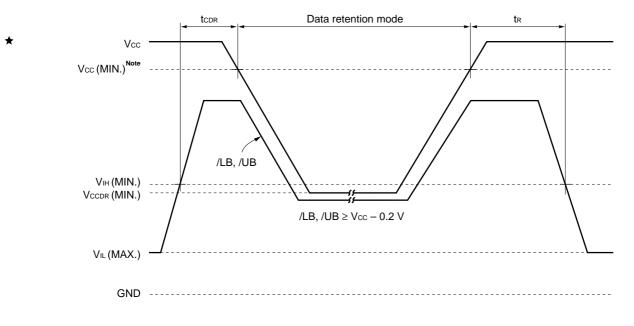
Low Vcc Data Retention Characteristics (T_A = -25 to +85 °C)

Note t_{RC} : Read cycle time


Data Retention Timing Chart

(1) /CE1 Controlled

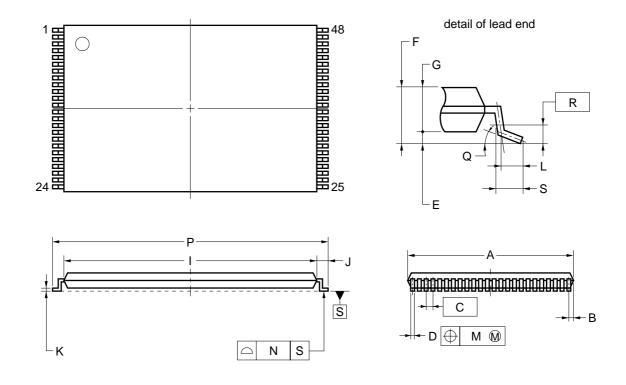
Note B version : 2.7 V, C version : 2.2 V, D version : 1.8 V


- **Remark** On the data retention mode by controlling /CE1, the input level of CE2 must be \ge Vcc 0.2 V or \le 0.2 V. The other pins (Address, I/O, /WE, /OE, /LB, /UB) can be in high impedance state.
- (2) CE2 Controlled

Note B version : 2.7 V, C version : 2.2 V, D version : 1.8 V

Remark On the data retention mode by controlling CE2, the other pins (/CE1, Address, I/O, /WE, /OE, /LB, /UB) can be in high impedance state.

(3) /LB, /UB Controlled



Note B version : 2.7 V, C version : 2.2 V, D version : 1.8 V

Remark On the data retention mode by controlling /LB and /UB, the input level of /CE1 and CE2 must be \geq Vcc - 0.2 V or \leq 0.2 V. The other pins (Address, I/O, /WE, /OE) can be in high impedance state.

★ Package Drawing

48-PIN PLASTIC TSOP(I) (12x18)

NOTES

- 1. Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.
- 2. "A" excludes mold flash. (Includes mold flash : 12.4 mm MAX.)

ITEM	MILLIMETERS
A	12.0±0.1
В	0.45 MAX.
С	0.5 (T.P.)
D	0.22±0.05
Е	0.1±0.05
F	1.2 MAX.
G	1.0±0.05
I	16.4±0.1
J	0.8±0.2
к	0.145 ± 0.05
L	0.5
М	0.10
Ν	0.10
Р	18.0±0.2
Q	$3^{\circ}^{+5^{\circ}}_{-3^{\circ}}$
R	0.25
S	0.60±0.15
S48GY-50-MJH1-1	

Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD444012L-X.

★ Types of Surface Mount Device

$$\label{eq:model} \begin{split} \mu \mathsf{PD444012LGY-BxxX-MJH: 48-PIN PLASTIC TSOP (I) (12\times18) (Normal bent)} \\ \mu \mathsf{PD444012LGY-CxxX-MJH: 48-PIN PLASTIC TSOP (I) (12\times18) (Normal bent)} \\ \mu \mathsf{PD444012LGY-DxxX-MJH: 48-PIN PLASTIC TSOP (I) (12\times18) (Normal bent)} \end{split}$$

[MEMO]

NOTES FOR CMOS DEVICES

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of July, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4