

Isolated Feedback Generator

FEATURES

- An Amplitude-Modulation System for Transformer Coupling an Isolated Feedback Error Signal
- Low-Cost Alternative to Optical Couplers
- Internal 1% Reference and Error Amplifier
- Internal Carrier Oscillator Usable to 5MHz
- Modulator Synchronizable to an External Clock
- · Loop Status Monitor

DESCRIPTION

The UC1901 family is designed to solve many of the problems associated with closing a feedback control loop across a voltage isolation boundary. As a stable and reliable alternative to an optical coupler, these devices feature an amplitude modulation system which allows a loop error signal to be coupled with a small RF transformer or capacitor.

The programmable, high-frequency oscillator within the UC1901 series permits the use of smaller, less expensive transformers which can readily be built to meet the isolation requirements of today's line-operated power systems. As an alternative to RF operation, the external clock input to these devices allows synchronization to a system clock or to the switching frequency of a SMPS.

An additional feature is a status monitoring circuit which provides an active-low output when the sensed error voltage is within $\pm 10\%$ of the reference. The DRIVERA output, DRIVERB output, and STATUS output are disabled until the input supply has reached a sufficient level to allow proper operation of the device.

Since these devices can also be used as a DC driver for optical couplers, the benefits of 4.5 to 40V supply operation, a 1% accurate reference, and a high gain general purpose amplifier offer advantages even though an AC system may not be desired.

UC1901 SIMPLIFIED SCHEMATIC

ABSOLUTE MAXIMUM RATINGS (Note 1)

Input Supply Voltage, VIN40V
Reference Output Current10mA
Driver Output Currents
Status Indicator Voltage40V
Status Indicator Current
Ext. Clock Input
Error Amplifier Inputs0.5V to +35V
Power Dissipation at TA = 25°C1000mW
Power Dissipation at Tc = 25°C2000mW
Operating Junction Temperature55°C to +150°C
Storage Temperature65°C to +150°C
Lead Temperature (Soldering, 10 seconds)300°C

Note 1: Voltages are referenced to ground, Pin 7. Currents are positive into, negative out of the specified terminal.

Note 2: Consult Packaging section of Databook for thermal limitations and considerations of package.

CONNECTION DIAGRAMS

TEMPERATURE AND PACKAGE SELECTION GUIDE

	TEMPERATURE RANGE	AVAILABLE PACKAGES
UC1901	-55°C to +125°C	J, L
UC2901	-40°C to +85°C	D, DW, J, N, Q
UC3901	0°C to +70°C	D, DW, J, N, Q

ELECTRICAL CHARACTERISTICS Unless otherwise stated, these specifications apply for $V_{IN} = 10V$, $R_T = 10k\Omega$, $C_T = 820pE$, $T_A = T_A$

PARAMETER	TEST CONDITIONS	UC19	UC1901/UC2901			UC3901		
		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Reference Section								
Output Voltage	T _J = 25°C	1.485	1.5	1.515	1.47	1.5	1.53	V
	$T_{MIN} \le T_{J} \le T_{MAX}$	1.470	1.5	1.530	1.455	1.5	1.545	
Line Regulation	V _{IN} = 4.5 to 35V		2	10		2	15	mV
Load Regulation	I _{OUT} = 0 to 5mA		4	10		4	15	mV
Short Circuit Current	T _J = 25°C		-35	-55		-35	-55	mV
Error Amplifier Section (To Com		-						
Input Offset Voltage	V _{CM} = 1.5V		1	4		1	8	mV
Input Bias Current	V _{CM} = 1.5V		-1	-3		-1	- 6	μА
Input Offset Current	V _{CM} = 1.5V		0.1	1		0.1	2	μA
Small Signal Open Loop Gain	- July -	40	60	-	40	60		dB
CMRR	V _{CM} = 0.5 to 7.5V	60	80		60	80		dB
PSRR	V _{IN} = 2 to 25V	80	100		80	100		dB
Output Swing, Δ Vo		0.4	0.7	-	0.4	0.7		V
Maximum Sink Current		90	150		90	150		μА
Maximum Source Current		-2	-3		-2	-3		mA
Gain Band Width Product		 	1			1		MHz
Slew Rate			0.3			0.3		V/µS
Modulators/Drivers Section (Fro	om Compensation Terminal)		0.0					Ινησ
Voltage Gain		11	12	13	10	12	14	dB
Output Swing		±1.6	±2.8		±1.6	±2.8	1.7	V
Driver Sink Current		500	700		500	700		μΑ
Driver Source Current		-15	-35		-15	-35		mA
Gain Band Width Product		· · ·	25		-'-	25		MHz
Oscillator Section				I	I			1 1411 12
Initial Accuracy	T _J = 25°C	140	150	160	130	150	170	kHz
,	$T_{MIN} \le T_J \le T_{MAX}$	130	1.00	170	120	1.50	180	kHz
Line Sensitivity	V _{IN} = 5 to 35V	1,55	.15	.35		.15	.60	%/V
Maximum Frequency	$R_T = 10k, C_T = 10pF$		5			5	1.00	MHz
Ext. Clock Low Threshold	Pin 1 (C _T) = V _{IN}	0.5			0.5	<u> </u>		V
Ext. Clock High Threshold	Pin 1 (C _T) = V_{IN}			1.6	- 0.0		1.6	v
Status Indicator Section	1 (-1)			1	1	4	,	<u>*</u>
Input Voltage Window	@ E/A Inputs, V _{CM} = 1.5V	±135	±150	±165	±130	±150	±170	mV
Saturation Voltage	E/A Δ Input = 0V, I _{SINK} = 1.6mA			0.45	00		0.45	V
Max. Output Current	Pin 13 = 3V, E/A \triangle Input = 0.0V	8	15		8	15	0.10	mA
Leakage Current	Pin 13 = 40V, E/A ΔInput = 0.2V		.05	1		.05	5	μA
Supply Current	V _{IN} = 35V		5	8		5	10	mA
UVLO Section	1.114		<u> </u>	<u> </u>	1	, 0		1 11/5
Drivers Enabled Threshold	At Input Supply V _{IN}	<u> </u>	3.9	4.5	· · · · · ·	3.9	4.5	Τv
Status Output Enabled Threshold	At Input Supply V _{IN}		3.9	4.5		3.9	4.5	V
Change in Reference Output	When V _{IN} Reaches UVLO Threshold		-2	-30		-2	-30	mV

Figure 1. Transformer Coupled Open Loop Transfer Function

Figure 2. Oscillator Frequency

Figure 3. Typical Driver Output Swing vs Temperature

APPLICATION INFORMATION

The error amplifier compensation terminal, Pin 12, is intended as a source of feedback to the amplifier's inverting input at Pin 11. For most applications, a series DC blocking capacitor should be part of the feedback network. The amplifier is internally compensated for unity feedback.

The waveform at the driver outputs is a squarewave with an amplitude that is proportional to the error amplifier input signal. There is a fixed 12dB of gain from the error amplifier compensation pin to the modulator driver outputs. The frequency of the output waveform is controlled by either the internal oscillator or an external clock signal.

With the internal oscillator the squarewave will have a fixed 50% duty cycle. If the internal oscillator is disabled by connecting Pin 1, C_R , to V_{IN} then the frequency and duty cycle of the output will be determined by the input clock waveform at Pin 2. If the oscillator remains disabled and there is not clock input at Pin 2, there will be a linear 12dB of signal gain to one or the other of the driver outputs depending on the DC state of Pin 2.

The driver outputs are emitter followers which will source a minimum of 15mA of current. The sink current, internally limited at $700\mu A$, can be increased by adding resistors to ground at the driver outputs.

APPLICATION INFORMATION (continued)

Figure 4. R.F. Transformer Coupled Feedback

Figure 5. Feedback Coupled at Switching Frequency

TYPICAL APPLICATION

Figure 6. Optically Coupled DC Feedback

14-PIN PLASTIC DIP ~ N PACKAGE SUFFIX

,						
	INC	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX		
Α	.245	.260	6.22	6.60	1	
В	.745	.775	18.92	19.68	1	
С	-	.210	-	5,33		
C1	.125	.150	3.18	3.81		
C2	.015	.055	0.38	1.40	2	
D	.300	.325	7.62	8.26	3	
Ε	.100	00 BSC 2.54 BSC		4		
F	.014	.022	0.35	0.56		
F1	.045	.070	1.14	1.78		
F2	.008	.014	0.20	0.35		
G	.300	.400	7.62	10.16	5	
Н	.005	-	0.13	-		
L	.115	.160	2.92	4.06		

- 1. 'A' AND 'B' DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 IN. PER SIDE.
- 2. 'C2' SHALL BE MEASURED FROM THE SEATING PLANE TO THE BASE PLANE.
- 3. 'D' SHALL BE MEASURED WITH THE LEADS CONSTRAINED TO BE PERPENDICULAR TO THE BASE PLANE.
- 4. THE BASIC LEAD SPACING IS 0.100 IN. BETWEEN CENTERLINES. EACH LEAD CENTERLINE SHALL BE LOCATED WITHIN ± 0.010 IN. OF ITS EXACT TRUE POSITION.
- 5. 'G' SHALL BE MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- 6. CONTROLLING DIMENSION: INCHES. MILLIMETERS SHOWN FOR REFERENCE ONLY.

14-PIN SOIC SURFACE MOUNT~ D, PACKAGE SUFFIX

DIMENSIONS						
	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX		
A	.228	.244	5.80	6.20		
Al	.150	.158	3.80	4.00		
В	.336	.344	8.55	8.75		
С	.053	.069	1.35	1.75		
C1	.004	.009	0.10	0.22		
E	.050	BSC	1.27	BSC		
F	.014	.019	0.36	0.48		
G	.007	.010	0.19	0.25		
Н	.016	.035	0.41	0.89		
Θ	0°	8°	0°	8°		

PRN 1 INDEX AREA

- 2. LEADS SHALL BE COPLANAR WITHIN 0.004 IN. AT THE SEATING PLANE.
- THE BASIC LEAD SPACING IS 0.050 IN. BETWEEN CENTERLINES. EACH LEAD CENTERLINE SHALL BE LOCATED WITHIN ±0.004 IN. OF ITS EXACT TRUE POSITION.
- 4. CONTROLLING DIMENSION: INCHES. MILLIMETERS SHOWN FOR REFERENCE ONLY.
- DIMENSION 'F' DOES NOT INCLUDE DAMBAR PROTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED F' MAXIMUM BY MORE THAN 0.003 IN. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.004 IN. AND 0.010 IN. FROM THE LEAD TIP.
- 'C1' IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY (BASE PLANE).

9 8 9 9

16-PIN SOIC SURFACE MOUNT~ DW PACKAGE SUFFIX

	DIMENSIONS						
	INC	HES	MILLIMETERS				
	MIN	MAX	MIN	MAX			
Α	.394	.419	10.00	10.64			
A1	.292	.299	7.42	7.59			
В	.403	.413	10.24	10.49			
С	.097	.104	2.48	2.64			
C1	.004	.011	0.10	0.28			
Е	.050 BSC		1.27 BSC				
F	.014	.019	0.36	0.48			
G	.009	.012	0.23	0.30			
Н	.018	.035	0.46	0.89			
Ü	0°	8°	0°	8°			

- 'A1' AND 'B' DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 IN. PER SIDE.
- 2. LEADS SHALL BE COPLANAR WITHIN 0.004 IN. AT THE SEATING PLANE.
- THE BASIC LEAD SPACING IS 0.050 IN. BETWEEN CENTERLINES. EACH LEAD CENTERLINE SHALL BE LOCATED WITHIN ±0.004 IN. OF ITS EXACT TRUE POSITION.
- 4. CONTROLLING DIMENSION: INCHES. MILLIMETERS SHOWN FOR REFERENCE ONLY.
- DIMENSION 'F' DOES NOT INCLUDE DAMBAR PROTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 'F' MAXIMUM BY MORE THAN 0.003 IN. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.004 IN. AND 0.010 IN. FROM THE LEAD TIP.
- 'C1' IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY (BASE PLANE).

14-PIN CERAMIC DIP ~ J PACKAGE SUFFIX

		IMENS	IONS			
	INC	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX		
Α	0.290	0.320	7.37	8.13	7	
Α1	0.220	0.310	5.59	7.87	4	
В	-	0.785	-	19.94	4	
С	-	0.200	-	5.08		
D	0.015	0.060	0.38	1.52	3	
E	0.014	0.026	0.36	0.66	8	
E1	0.045	0.065	1.14	1.65	2	
F	0.008	0.018	0.20	0.46	8	
G	0.100 BSC		2.54	BSC	5	
Н	0.005	-	0.13	-	6	
J	0.125	0.200	3.18	5.08		
æ	0°	15°	0°	15°		

- 1. INDEX AREA: A NOTCH OR A PIN ONE IDENTIFICATION MARK SHALL BE LOCATED ADJACENT TO PIN ONE. THE MANUFACTURER'S IDENTIFICATION SHALL NOT BE USED AS A PIN ONE IDENTIFICATION MARK.
- 2. THE MINIMUM LIMIT FOR DIMENSION 'E1' MAY BE 0.023 (0.58mm) FOR LEADS NUMBER 1, 7, 8 AND 14 ONLY.
- 3. DIMENSION 'D' SHALL BE MEASURED FROM THE SEATING PLANE TO THE BASE PLANE.
- THIS DIMENSION ALLOWS FOR OFF-CENTER LID, MENISCUS AND GLASS OVERRUN.
- 5. THE BASIC PIN SPACING IS 0.100 (2.54mm) BETWEEN CENTERLINES. EACH PIN CENTERLINE SHALL BE LOCATED WITHIN ±0.010 (0.25mm) OF ITS EXACT TRUE POSITION.
- 6. APPLIES TO ALL FOUR CORNERS (LEADS NUMBER 1, 7,8 AND 14).
- 7. DIMENSION 'A' SHALL BE MEASURED AT THE CENTERLINE OF THE LEADS WHEN $\omega=0^{\circ}.$
- 8. THE MAXIMUM LIMITS OF DIMENSIONS 'E' AND 'F' SHALL BE MEASURED AT THE CENTER OF THE FLAT WHEN SOLDER DIP IS APPLIED.
- 9. CONTROLLING DIMENSION: INCHES. MILLIMETERS SHOWN FOR REFERENCE ONLY.
- * THE SEATING PLANE IS LOCATED AT THE LOWEST POINT ON THE LEAD AT

20-PIN CERAMIC LEADLESS SURFACE MOUNT ~ L PACKAGE SUFFIX

	INC	INCHES MILLIMETERS NOT		MILLIMETERS		
	MIN	MAX	MIN	MAX		
Α	.060	.100	1.52	2.54	6	
A1	.050	.088	1.27	2.24		
B1	.022	.028	0.56	0.71	1,3	
B2	.072	REF.	1.83	REF.		
В3	.006	.022	0.15	0.56	8	
D/E	.342	.358	8.69	9.09		
D1/E1	.200 BSC		5.08 BSC		***************************************	
D2/E2	.100 BSC		2.54	2.54 BSC		
D3/E3	-	.358	-	9.09	4	
L	.045	.055	1.14	1.40		
L1	.045	.055	1.14	1.40		
L2	.075	.095	1.90	2.41	5	
L3	.003	.015	0.08	0.38		
N	2	20	20		2	
ND/NE		5	5		2	
е	.050	BSC	1.27	1.27 BSC		

- 1. A MINIMUM CLEARANCE OF 0.015 IN. (0.38mm) SHALL BE MAINTAINED BETWEEN ADJACENT TE
- 2. 'N' IS THE MAXIMUM QUANTITY OF TERMINAL POSITIONS. 'ND' AND 'NE' ARE THE NUMBERS OF AND 'E' RESPECTIVELY.
- 3. ELECTRICAL CONNECTION TERMINALS ARE REQUIRED ON PLANE 1 AND OPTIONAL ON PLANE THEY SHALL BE ELECTRICALLY CONNECTED TO OPPOSING TERMINALS ON PLANE 1.
- 4. A MINIMUM CLEARANCE OR 0.015 IN. (0.38mm) SHALL BE MAINTAINED BETWEEN A METAL LID TERMINALS, METALLIZED CASTELLATIONS, ETC.) THE LID SHALL NOT EXTEND BEYOND THE E
- 5. THE INDEX FEATURE FOR NUMBER 1 TERMINAL IDENTIFICATION, OPTIONAL ORIENTATION OR AREA DEFINED BY DIMENSIONS 'B2' AND 'L2' ON PLANE 1.
- 6. DIMENSION 'A' CONTROLS THE OVERALL PACKAGE THICKNESS.
- 7. CONTROLLING DIMENSION: INCHES. MILLIMETERS SHOWN FOR REFERENCE ONLY.
- 8. CASTELLATIONS ARE REQUIRED ON BOTTOM TWO LAYERS. CASTELLATIONS IN THE TOP LAYE
- 9. WHEN SOLDER DIP LEAD FINISH APPLIES, SOLDER BUMP HEIGHT SHALL NOT EXCEED 0.007 INC NOT EXCEED 0.006 INCHES.
- 10. THE BASIC TERMINAL SPACING IS 0.050 INCHES BETWEEN CENTERLINES. EACH TERMINAL CEN INCHES OF ITS EXACT TRUE POSITION.

20-PIN PLASTIC PLCC SURFACE MOUNT~ Q PACKAGE SUFFIX

- 1. 'A1' DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 IN. PER SIDE.
- 2. THE BASIC LEAD SPACING IS 0.050 IN. BETWEEN CENTERLINES. EACH LEAD CENTERLINE SHALL LOCATED WITHIN ± 0.004 IN. OF ITS EXACT TRUE POSITION.
- 3. 'F' IS MEASURED FROM THE SEATING PLANE TO THE BASE PLANE.
- 4. LEADS SHALL BE COPLANAR WITHIN 0.004 IN. AT THE SEATING PLANE.
- 5. CONTROLLING DIMENSION: INCHES. MILLIMETERS SHOWN FOR REFERENCE ONLY.