To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMSs etc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, anc
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

1RENESAS

RenesasTechnology Corp.

Cautions

Keep safety first in your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and morereliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1

These materials are intended as a reference to assist our customersin the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It istherefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as atotal system before
making afinal decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for use in adevice
or system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of aproduct contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

H8/300L Series
Programming Manual

LENESAS

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’srights, including
intellectual property rights, in connection with use of the information contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi's sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so
that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.

5. Thisproduct is not designed to be radiation resistant.

6. No oneis permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.

Preface

The H8/300L Series of single-chip microcomputersis built around the high-speed H8/300L
CPU, with an architecture featuring eight 16-bit (or sixteen 8-bit) general registersand a
concise, optimized instruction set.

This manual gives detailed descriptions of the H8/300L instructions. The descriptions apply to
all chipsinthe H8/300L Series. Assembly-language programmers should aso read the
separate H8/300 Series Cross Assembler User's Manual.

For hardware details, refer to the hardware manual of the specific chip.

Contents

SECHON L. CPU ettt b e 1
L1 OVEIVIEIW .ottt bbbttt e e e bt s bt bt e bt e st et e e et e e e benaeenis 1
O O R == [PR 1
1.1.2 DELB SITUCIUIE ...ttt s ne e e 2
1.1.3 AdArESS SPACE......coeiieirieeieeiiee ettt b 4
1.1.4 Register CONfIQUILION.......ceoueieriiriiriesie sttt re e 5
I L o 1 <. £ ST PP 6
121 GeNEral REJISIEIS....oco it 6
1.2.2 CONrol REJISIEISocueiueiieeieeieie ettt s et se b e 6
1.2.3 Initial REQISIEr VAIUES.......ceieiiieeiereseseeeee et 7
1.3 INSITUCTIONS ...ttt bbbt b e bbbttt e e e e e b neenns 8
1.3.1 TYPESOf INSIIUCLIONS.....c..ceeiieieieiesiesie e sre e 8
1.3.2 INSIrUCEION FUNCLIONS ...ttt 9
1.3.3 BasiCINSIrUCION FOIMELSccccoiriiriirierieeiieieee e 20
1.3.4 Addressing Modes and Effective Address Calculation............cccccveeeveenvcenneenne 26
SECtioN 2. INSIFTUCLION SEL ..o ovveeeieiieeeee bbb 31
2.1 EXPlanation FOIMELccoieiireeieiesese ettt 31
2.2 INSIIUCLIONScviiieeete sttt bbbttt e e e et b e sb e b e bt e bt e e et e s e b e nrenne e 36
2.2.1(1) ADD (add binary) (DY)cccooerereririnieieeeresees e s 36
2.2.1(2) ADD (add binary) (WOrd)........cccoeerererenenineeiesese s 37
222 ADDS (add with SIgn eXtENSION)eeerereeieere e 38
2.2.3 ADDX (add with extend CaImy)ccoceeerereeiienese e 39
2.2.4 AND (AND [OQICE) ...veieiieeiieieie e 40
2.2.5 ANDC (AND CONLIOl FEJISIEN) ...eovevereerieriieeeie e e 41
2.2.6 BAND (Dit AND) ..ottt s 42
2.2.7 Bee (branch conditionally)coooevereriiieeeese e 43
2.2.8 BCLR (DIt ClEAI) .cveeeeeieeeeee e 46
2.2.9 BIAND (Dit inVErt AND).....ceoiiiiiiiiesieseeeeeeee e 48
2.2.10 BILD (Dit invert 108d)..........ccooererirenereeeeeeee e 49
2211 BIOR (bit invert inCluSIVE OR)cooiirerieieiee et 50
2.2.12 BIST (DIt INVEIT SEOME)coueeiiieiesiereseeee e 51
2.2.13 BIXOR (bit invert excluSIVE OR)ccerieieiiiieresese e 52
2.2.14 BLD (DIt 10AO) w.euvieeieeieeieeeeee s 53
2.2.15 BNOT (DIt NOT) et nne s 54

2.2.16
2.2.17
2.2.18
2.2.19
2.2.20
2.2.21
2.2.22 (1)
2.2.22 (2)
2.2.23
2.2.24
2.2.25
2.2.26
2.2.27
2.2.28
2.2.29
2.2.30
2.2.31
2.2.32 (1)
2.2.32(2)
2.2.32 (3)
2.2.32 (4)
2.2.32 (5)
2.2.32 (6)
2.2.33
2.2.34
2.2.35
2.2.36
2.2.37
2.2.38
2.2.39
2.2.40
2.2.41
2.2.42
2.2.43
2.2.44
2.2.45
2.2.46

BOR (DIt iNCIUSIVE OR)ooceeeieieiecese ettt 56

BSET (DI SBL) .eveeeieeiesieeeiesie s st 57
BSR (branch to SUBrouting)............ccceeeeieie i 59
Y I (T 05 (o) S 60
2 S I (01 8 === PRSP 61
BXOR (bit eXClUSIVE OR)ooivieieeiececie et 63
(@Y1 e (o0l o7= 0=) N 0)7) IS 64
CMP (COMPAre) (WOId)ccueeeeeieeieeieseesieeeesee e eeesree e ee e e saeseesreesseeneens 65
DAA (decimal adjust add)..........cccererererineireseeeese e 66
DAS (decimal adjust SUDEFECE)cccveeeeiieeieseeee e 68
] O (o [= et £ 1.0 1 70
DIVXU (divide extend as unSigNed)cccceveeveeiienecnieseeseesee e eee e 71
EEPMOV (move datato EEPROM)ccccciiieiiriesece e 73
T O (T gt = 107 01 74
B 1Y (01 o) RS 75
JSR (JUMP tO SUDFOULINE).......eeveeieieeesie et ste ettt 76
I DIOR(For="e RroXelolgltge] Iy= o 1 (= o S 77
MOV (Move data) (BYLE)ccueveeieeieceese et 78
MOV (Move data) (WOId)........cceereeeiereerieeieseese e esre e 79
MOV (Move data) (DYLE)cceveereeeceese e 80
MOV (Move data) (WOId)........cceereeeeereerieeieseese e esee e 81
MOV (Move data) (BYLE)cceeveeieeeereere e 82
MOV (Move data) (WOId)........cceereeeiereerieeieseese e esee e 83
MULXU (multiply extend as unsigned)..........ccccoveveereeieneeseeseseeseesee e 84
N R (=0 = =) 85
(@] = (gToXo!o 1< = 1]) 1S 86
NOT (NOT = logical complement)ccecereereeieeneeie e 87
OR (inCluSIVE OR 1OGICAl)ecuveeeeeieeiesieesie ettt 88
ORC (inclusive OR CONLIOl FEQISLEN)cevveeeeeeerieeeeseerieeee e sieeeesee e e 89
@ (oTa] = - 90
OIS (1N S 1 7= = 91
@l I (o) = (= L= 1) S 92
ROTR (rotat@ right)cceveeeiieieeeseese e 93
ROTXL (rotate with extend carry [€ft)ccvoeveecenecie e 9
ROTXR (rotate with extend carry right)cccceeceeeeveeiienieseece e 95
RTE (return from eXCEPLION)ccveeieeeereeieseesie et esee e sre e s 96

RTS (return from SUBIOULINE)cccceeueeiecie e 97

2247 SHAL (SNIft ATtNMELC IEFE) oo 98

2.2.48 SHAR (shift arithmetic right)........ccceceveereeeeeeeee e 99
2.2.49 SHLL (Shift 10gical I6fT)coeiiiiiieeeeeee e 100
2.2.50 SHLR (shift logical Fght)ccccoveieee e 101
2.2.51 SLEEP (SIEED) .ttt e 102
2.2.52 STC (store from CONtrol FEQISLEY)cvveereeieereere e 103
2.2.53 (1) SUB (subtract binary) (DYLE)ccoiveieieeriee e ee s 104
2.2.53 (2) SUB (subtract binary) (WOrd).......ccceecueieereeesieseeseseesie e e ste e see e 105
2.2.54 SUBS (subtract with Sign eXtenSion)cccceeeereeieseeneee e 106
2.2.55 SUBX (subtract with eXtend CaIry)ccccoveeereereeieseese e seese s seesee e 107
2.2.56 XOR (exclusive OR [0QICal)cveerieeieiierie e seesie et 108
2.2.57 XORC (exclusive OR control register)ccoovveereeresieeneerieseeseesee e e 109
2.3 Operation COUE M@oc.eeieeeieeie ettt te e reese e e e sreeteeneesreensennnens 110
2.4 LiSt Of INSIIUCHIONS......coiuiitiitiiiisiieie ettt sttt b e nne e 112
2.5 Number of EXECULION SEALES........cceiiiiiiriiiisierieseees et 119
Section 3. CPU Operation SEalES ... v 127
3.1 Program EXECULION SEALEcccueieerieeieeeesieeieseeseesteseesteestesseesseesseesessseesseeessseensesnenas 128
3.2 EXCeption HaNdIING SEALES.........cciieieiieeieieseeseesie e ee st eee e reeae e sseeae e sseeneeneens 128
321 Types and Priorities of Exception Handling..........cccccvevvieevviceveere e, 128
322 Exception Sources and Vector Table..........cccovveveecenecce e 129
323 Outline of Exception Handling Operationcccccuvveveeeeesieesesseeseeseeenens 130
3.3 RESEL SEALE ...t et b et r e nr b 131
34 POWEI-DOWN SLALE.......coieiieeieeee ettt sn e r e sr e ne e 131
Section 4. Basic Operation TiMINg. ... 133
4.1 On-chip Memory (RAM, ROM)......coiiieiieierece st ee st ae e ae e eaesneenaeeneens 133

4.2 On-chip Peripheral Modules and EXternal DEVICES..........ccccevveiereeseeieneeseeseeseeseenens 134

Section 1. CPU

1.1 Overview

The H8/300L CPU at the heart of the H8/300L Series features 16 general registers of 8 bits
each (or 8 registers of 16-bits each), and a concise, optimized instruction set geared to high-
speed operation.

1.1.1 Features
The H8/300L CPU has the following features.

General register configuration
16 8-bit registers (can be used as 8 16-bit registers)

55 basic instructions
» Multiply and divide instructions
» Powerful bit manipulation instructions

8 addressing modes

* Register direct (Rn)

* Register indirect (@RnN)

» Register indirect with displacement (@(d:16, Rn))

* Register indirect with post-increment/pre-decrement (@Rn+/@ —Rn)
* Absolute address (@aa:8/@aa:16)

* Immediate (#xx:8/#xx:16)

* Program-counter relative (@(d:8, PC))

« Memory indirect (@ @aa:8)

64-kbyte address space

High-speed operation

All frequently used instructions are executed in 2 to 4 states
High-speed operating frequency: 5 MHz

Add/subtract between 8/16-bit registers: 0.4 us

8 8-bit multiply: 2.8 ps

16 + 8-bit divide: 2.8 us

Low-power operation

Transition to power-down state using SLEEP instruction

1.1.2 Data Structure

The H8/300L CPU can process 1-bit data, 4-bit (packed BCD) data, 8-bit (byte) data, and
16-bit (word) data.

Bit manipulation instructions operate on 1-bit data specified as bitn (n=0, 1, 2, ..., 7)ina
byte operand.

All operational instructions except ADDS and SUBS can operate on byte data.

The MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 biis 8 bits), and

DIVXU (16 bits + 8 bits) instructions operate on word data.

The DAA and DAS instruction perform decimal arithmetic adjustments on byte data in
packed BCD form. Each 4-bit of the byte is treated as a decimal digit.

Data Structure in General Registers: Data of all the sizes above can be stored in general
registers as shown in figure 1-1.

Data type Register No. Data format
7 0
1-Bit data RnH |7|6|5|4|3|2|1|O| Don't-care |
7 0
1-Bit data RnL [Don't-care [7{6]5|4[3[2]1]o]
7 0
Byte data RnH (., ..., Dontcare |
7 0
Byte data Rl [Donteare [1 111
15 0
Word data Rn BN
7 43 0
4-Bit BCD data RnH | :Up:per: | :Lov:ver: | Don't-care |
7 43 0
4-Bit BCD data RnL | Don't-care | :Up:per: l :LO\Ever: |
RnH: Upper 8 bits of General Register
RnL: Lower 8 bits of General Register
MSB: Most Significant Bit
LSB: Least Significant Bit

Figure 1-1. Register Data Structure

Data Structure in Memory: Figure 1-2 shows the structure of data in memory. The H8/300L

CPU is able to access word data in memory (MOV.W instruction), but only if the word data

starts from an even-numbered address. If an odd address is designated, no address error

occurs, but the access is performed starting from the previous even address, with the least

significant bit of the address regarded as 0.* The same applies to instruction codes.

* Note that the LSIs in the H8/300L Series also contain on-chip peripheral modules for which
access in word size is not possible. Details are given in the applicable hardware manual.

Data type Address Data format
T S
7 0

1-Bit data Address n 7[6]5/4[3]2[1]0

Byte data Address n : : : : : : :

Even address
Odd address

Word data

o0z

Even address
Odd address

Byte data (CCR) on stacl

Even address
Word data on stac} Odd address

w0z

CCR: Condition code register.
Note: Word data must begin at an even address.
* Ignored when returned.

Figure 1-2. Memory Data Formats

The stack is always accessed a word at a time. When the CCR is pushed on the stack, two
identical copies of the CCR are pushed to make a complete word. When they are returned, the
lower byte is ignored.

1.1.3 Address Space
The H8/300L CPU supports a 64-Kbyte address space (program code + data). The memory

map differs depending on the particular chip in the H8/300L Series and its operating mode.
See the applicable hardware manual for details.

1.1.4 Register Configuration

Figure 1-3 shows the register configuration of the H8/300L CPU. There are 16 8-bit general
registers (ROH, ROL, ..., R7H, R7L), which can also be accessed as eight 16-bit registers (RO
to R7). There are two control registers: the 16-bit program counter (PC) and the 8-bit
condition code register (CCR).

General Registers (Rn

7 07 0
ROH ROL
R1H R1L
R2H R2L
R3H R3L
R4H R4L
R5H R5L
R6H R6L
R7H (SP) R7L SP: Stack Pointer

Control Registers (CR)

15 0
| PC | Program Counter

76543210
CCR |I|U|H|U| N| Z| V|C| Condition Code Register
L Carry flag
—— Overflow flag
Zero flag

Negative flag
Half-carry flag

Interrupt mask bit
User bit

Figure 1-3. CPU Registers

1.2 Registers
1.2.1 General Registers

All the general registers can be used as both data registers and address registers. When usec
address registers, the general registers are accessed as 16-bit registers (RO to R7). When use
as data registers, they can be accessed as 16-bit registers (RO to R7), or the high (ROH to R7+
and low (ROL to R7L) bytes can be accessed separately as 8-bit registers. The register length
is determined by the instruction.

R7 also functions as the stack pointer, used implicitly by hardware in processing interrupts and
subroutine calls. In assembly language, the letters SP can be coded as a synonym for R7. As
indicated in figure 1-4, R7 (SP) points to the top of the stack.

T~ 1 A

Unused area

SP (R7) [>

Stack area

/_/

Figure 1-4. Stack Pointer
1.2.2 Control Registers
The CPU has a 16-bit program counter (PC) and an 8-bit condition code register (CCR).

(1) Program Counter (PC): This 16-bit register indicates the address of the next instruction
the CPU will execute. Instructions are fetched by 16-bit (word) access, so the least significant
bit of the PC is ignored (always regarded as 0).

(2) Condition Code Register (CCR): This 8-bit register indicates the internal status of the
CPU with an interrupt mask () bit and five flag bits: half-carry (H), negative (N), zero (2),
overflow (V), and carry (C) flags. The two unused bits are available to the user. The bit
configuration of the condition code register is shown below.

Bit 7 6 5 4 3 2 1 0
| U H U N Z V C

Initial value 1 * * * *
Read/Write R/W R/W R/W R/W RW R/W R/W R/W

* Not fixed

*
*
*

Bit 7—Interrupt Mask Bit (I): When this bit is set to 1, all interrupts except NMI are
masked. This bit is set to 1 automatically at the start of interrupt handling.

Bits 6 and 4—User Bits (U): These bits can be written and read by software for its own
purposes using LDC, STC, ANDC, ORC, and XORC instructions.

Bit 5—Half-Carry (H): This bit is used by add, subtract, and compare instructions to indicate
a borrow or carry out of bit 3 or bit 11. It is referenced by the decimal adjust instructions.

Bit 3—Negative (N): This bit indicates the value of the most significant bit (sign bit) of the
result of an instruction.

Bit 2—Zero (Z): This bit is set to 1 to indicate a zero result and cleared to O to indicate a
nonzero result.

Bit 1—Overflow (V): This bit is set to 1 when an arithmetic overflow occurs, and cleared to
0 at other times.

Bit 0—Carry (C): This bit is used by:

* Add, subtract, and compare instructions, to indicate a carry or borrow at the most
significant bit

« Shift and rotate instructions, to store the value shifted out of the most or least significant
bit

e Bit manipulation instructions, as a bit accumulator

Note that some instructions involve no flag changes. The flag operations with each instruction
are indicated in the individual instruction descriptions that follow in section 2, Instruction Set.
CCRis used by LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags
are used by the conditional branch instruction (Bcc).

1.2.3 Initial Register Values
When the CPU is reset, the program counter (PC) is loaded from the vector table and the

interrupt mask bit (1) in CCR is setto 1. The other CCR bits and the general registers are not
initialized.

The initial value of the stack pointer (R7) is not fixed. To prevent program crashes the stack
pointer should be initialized by software, by the first instruction executed after a reset.

1.3 Instructions

Features:

* The H8/300L CPU has a concise set of 55 instructions.

* A general-register architecture is adopted.

» Allinstructions are 2 or 4 bytes long.

» Fast multiply/divide instructions and extensive bit manipulation instructions are supported.
» Eight addressing modes are supported.

1.3.1 Types of Instructions

Table 1-1 classifies the H8/300L instructions by type. Section 2, Instruction Set, gives detailed
descriptions.

Table 1-1. Instruction Classification

Function Instructions Types

Data transfer MOV, POP+, PUSH 1

Arithmetic operationé\DD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, 14
DAA, DAS, MULXU, DIVXU, CMP, NEG

Logic operations AND, OR, XOR, NOT 4

Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, 8
ROTXR

Bit manipulation BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR 14
BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST

Branch Bcc**, JMP, BSR, JSR, RTS 5

System control RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP 8

Block data transfer EEPMOV 1

Total 55

* POP Rn is equivalent to MOV.W @SP+, Rn.
PUSH Rn is equivalent to MOV.W Rn, @-SP.
** Bcce is a conditional branch instruction in which cc represents a condition.

1.3.2 Instruction Functions

Tables 1-2 to 1-9 give brief descriptions of the instructions in each functional group.
The following notation is used.

Notation

Rd General register (destination)
Rs General register (source)
Rn General register

(EAd) Destination operand
(EAs) Source operand

CCR Condition code register

N N (negative) bit of CCR

Z Z (zero) bit of CCR

V (overflow) bit of CCR

C C (carry) bit of CCR

PC Program counter

SP Stack pointer (R7)

#lmm Immediate data

op Operation field

disp Displacement

+ Addition

- Subtraction
% Multiplication

<

+ Division

AND logical

OR logical

Exclusive OR logical

Move

- Not

:3, :8, :16 3-hit, 8-bit, or 16-bit length

[I

i

Table 1-2. Data Transfer Instructions

Instruction Size* Function

MOV B/W (EAs) |, Rd, Rs_ (EAd)
Moves data between two general registers or between a general
register and memory, or moves immediate data to a general register.
The Rn, @Rn, @(d:16, Rn), @aa:16, #xx:8 or #xx:16, @—-Rn, and
@Rn+ addressing modes are available for byte or word data. The
@aa:8 addressing mode is available for byte data only.
The @—R7 and @R7+ modes require word operands. Do not
specify byte size for these two modes.
POP wW @SP+_ Rn
Pops a 16-bit general register from the stack.
Equivalent to MOV.W @SP+, Rn.
PUSH w Rn _ @-SP
Pushes a 16-bit general register onto the stack.
Equivalent to MOV.W Rn, @-SP.

* Size: Operand size
B: Byte
W: Word

10

Table 1-3. Arithmetic Instructions

Instruction Size* Function

ADD B/W Rd +Rs _ Rd, Rd+#mm_ Rd

SUB Performs addition or subtraction on data in two general registers,
or addition on immediate data and data in a general register.
Immediate data cannot be subtracted from data in a general register.
Word data can be added or subtracted only when both words are in
general registers.

ADDX B Rd+Rs+*C _ Rd, Rd+*#mmz=C _ Rd

SUBX Performs addition or subtraction with carry or borrow on byte data
in two general registers, or addition or subtraction on immediate data
and data in a general register.

INC B Rd+1 _ Rd

DEC Increments or decrements a general register.

ADDS wW Rd+1 Rd,Rd+2_Rd

SUBS Adds or subtracts immediate data to or from data in a general
register. The immediate data must be 1 or 2.

DAA B Rd decimal adjust_ Rd

DAS Decimal-adjusts (adjusts to packed BCD) an addition or subtraction
result in a general register by referring to the condition code register.

MULXU B Rd 4Rs _ Rd

Performs 8-bit, 8-bit unsigned multiplication on data in two

general registers, providing a 16-bit result.
DIVXU B Rd+Rs _ Rd
Performs 16-bit + 8-bit unsigned division on data in two general
registers, providing an 8-bit quotient and 8-bit remainder.
CMP B/W Rd-Rs, Rd-#lmm
Compares data in a general register with data in another general
register or with immediate data. Word data can be compared only
between two general registers.
NEG B 0-Rd _ Rd
Obtains the two’s complement (arithmetic complement) of data in a
general register.

* Size: Operand size
B: Byte
W: Word

11

Table 1-4. Logic Operation Instructions

Instruction Size* Function
AND B Rd g Rs | Rd, Rdg#mm _ Rd
Performs a logical AND operation on a general register and
another general register or immediate data.
OR B RdgRs | Rd, Rdg#mm _ Rd
Performs a logical OR operation on a general register and another
general register or immediate data.
XOR B Rd g Rs_ Rd, Rdg#mm _ Rd
Performs a logical exclusive OR operation on a general register
and another general register or immediate data.
NOT B -Rd _ Rd
Obtains the one’s complement (logical complement) of general
register contents.

* Size: Operand size
B: Byte

Table 1-5. Shift Instructions

Instruction Size* Function

SHAL B Rd shift _ Rd

SHAR Performs an arithmetic shift operation on general register contents.
SHLL B Rd shift _ Rd

SHLR Performs a logical shift operation on general register contents.
ROTL B Rd rotate | Rd

ROTR Rotates general register contents.

ROTXL B Rd rotate through carry, Rd

ROTXR Rotates general register contents through the C (carry) bit.

* Size: Operand size
B: Byte

12

Table 1-6. Bit Manipulation Instructions

Instruction Size*

Function

BSET B 1 _ (<bit-No.> of <EAd>)

Sets a specified bit in a general register or memory to 1. The bit is
specified by a bit number, given in 3-bit immediate data or the lower
three bits of a general register.

BCLR B 0 _, (<bit-No.> of <EAd>)

Clears a specified bit in a general register or memory to 0. The bit
is specified by a bit number, given in 3-bit immediate data or the lower
three bits of a general register.

BNOT B 7(<bit-No.> of <EAd>) _ (<bit-No.> of <EAd>)

Inverts a specified bit in a general register or memory. The bit is
specified by a bit number, given in 3-bit immediate data or the lower
three bits of a general register.

BTST B - (<bit-No.> of <EAd>) Z

Tests a specified bit in a general register or memory and sets or
clears the Z flag accordingly. The bit is specified by a bit number,
given in 3-bit immediate data or the lower three bits of a general
register.

BAND B C (<bit-No.> of <EAd>) C

ANDs the C flag with a specified bit in a general register or
memory.

BIAND B C [- (<bit-No.> of <EAd>)] | C

ANDs the C flag with the inverse of a specified bit in a general
register or memory.

The bit number is specified by 3-bit immediate data.

BOR B C (<bit-No.> of <EAd>) | C
ORs the C flag with a specified bit in a general register or memory.
BIOR B C [(<bit-No.> of <EAd>)] | C

ORs the C flag with the inverse of a specified bit in a general
register or memory.
The bit number is specified by 3-bit immediate data.

13

Table 1-6. Bit Manipulation Instructions (Cont.)

Instruction Size* Function

BXOR B C (<bit-No.> of <EAd>) | C
Exclusive-ORs the C flag with a specified bit in a general register
or memory.
BIXOR B C [- (<bit-No.> of <EAd>)] | C

Exclusive-ORs the C flag with the inverse of a specified bit in a
general register or memory.
The bit number is specified by 3-bit immediate data.

BLD B (<bit-No.> of <EAd>) | C
Copies a specified bit in a general register or memory to the C flag.
BILD B - (<bit-No.> of <EAd>) _ C

Copies the inverse of a specified bit in a general register or
memory to the C flag.
The bit number is specified by 3-bit immediate data.

BST B C _ (<bit-No.> of <EAd>)
Copies the C flag to a specified bit in a general register or memory.
BIST B - C _ (<bit-No.> of <EAd>)

Copies the inverse of the C flag to a specified bit in a general
register or memory.
The bit number is specified by 3-bit immediate data.

* Size: Operand size
B: Byte

14

Table 1-7. Branching Instructions

Instruction Size

Function

Bcc —

Branches if condition cc is true. The branching conditions are as

follows.
Mnemonic Description Condition
BRA (BT) Always (True) Always
BRN (BF) Never (False) Never
BHI High CphZz=0
BLS Low or Same Gz=1
BCC (BHS) Carry Clear C=0
(High or Same)
BCS (BLO) Carry Set (Low) c=1
BNE Not Equal Z=0
BEQ Equal Z=1
BVC Overflow Clear V=0
BVS Overflow Set V=1
BPL Plus N=0
BMI Minus N=1
BGE Greater or Equal V=0
BLT Less Than N5V =
BGT Greater Than £H(NpV)=0
BLE Less or Equal £H(NpV)=1
JMP — Branches unconditionally to a specified address.
BSR — Branches to a subroutine at a specified displacement from the current
address.
JSR — Branches to a subroutine at a specified address.
RTS — Returns from a subroutine.

15

Table 1-8. System Control Instructions

Instruction Size* Function

RTE — Returns from an exception handling routine.
SLEEP — Causes a transition to power-down state.
LDC B Rs _ CCR, #mm_ CCR

Moves immediate data or general register contents to the condition
code register.

STC B CCR_ Rd

Copies the condition code register to a specified general register.
ANDC B CCR#Imm _ CCR

Logically ANDs the condition code register with immediate data.
ORC B CCR#Imm _ CCR

Logically ORs the condition code register with immediate data.
XORC B CCRp #lmm _ CCR

Logically exclusive-ORs the condition code register with immediate

data.
NOP — PC+2_PC

Only increments the program counter.

* Size: Operand size
B: Byte

Table 1-9. Block Data Transfer Instruction

Instruction Size Function
EEPMOV — if R4L # 0 then
repeat @R5+ @R6+
R4L-1_ RAL
until R4L=0
else next;

Moves a data block according to parameters set in general registers
R4L, R5, and R6.

RA4L: size of block (bytes)

R5: starting source address

R6: starting destination address

Execution of the next instruction starts as soon as the block transfer is
completed.

This instruction is for writing to the large-capacity EEPROM provided
on chip with some models in the H8/300L Series. For details see the
applicable hardware manual.

16

Notes on Bit Manipulation Instructions: BSET, BCLR, BNOT, BST, and BIST are read-
modify-write instructions. They read a byte of data, modify one bit in the byte, then write the
byte back. Care is required when these instructions are applied to registers with write-only bits
and to the I/O port registers.

Sequence Operation

1 Read Read one data byte at the specified address

2 Modify Modify one bit in the data byte

3 Write Write the modified data byte back to the specified address

Example 1. BCLR is executed to clear bit O in port control register 4 (PCR4) under the
following conditions.

P4 Input pin, Low

P2. Input pin, High

P& —P4&:. Output pins, Low

The intended purpose of this BCLR instruction is to switchffan output to input.

Before Execution of BCLR Instruction

P47 P4 P45 P4 P4 P2 P4 P

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low
PCR4 0 0 1 1 1 1 1 1
PDR4 1 0 0 0 0 0 0 0

Execution of BCLR Instruction

BCLR #0 @PCR4 ; clear bit 0 in PCR4

After Execution of BCLR Instruction
P47 P46 P45 P44 P43 P42 P41 P40

Input/output Output Output Output Output Output Output Output Input

Pin state Low High Low Low Low Low Low High
PCR4 1 1 1 1 1 1 1 0
PDR4 1 0 0 0 0 0 0 0

17

Explanation: To execute the BCLR instruction, the CPU begins by reading PCR4. Since
PCRA4 is a write-only register, it is read as H'FF, even though its true value is H'3F.

Next the CPU clears bit 0 of the read data, changing the value to H'FE.

Finally, the CPU writes this value (H'FE) back to PCR4 to complete the BCLR instruction.

As a result, bit 0 in PCR4 is cleared to 0, makingdinput pin. In addition, bits 7 and 6 in
PCR4 are set to 1, making RP&hd P4 output pins.

Example 2: BSET is executed to set bit O in the port 4 port data register (PDR4) under the
following conditions.

P47 Input pin, Low

P26: Input pin, High

P& - P4&: Output pins, Low

The intended purpose of this BSET instruction is to switch the output level abR4Low to
High.

Before Execution of BSET Instruction

P47 P4 P4 P4 P4 P2 P4 P

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low
PCR4 0 0 1 1 1 1 1 1
PDR4 1 0 0 0 0 0 0 0

Execution of BSET Instruction

BSET #0 @PDR4 , set bit 0 in port 4 port data register

18

After Execution of BSET Instruction

P47 P46 P45 P44 P43 P42 P41 P40
Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low High
PCR4 0 0 1 1 1 1 1 1
PDR4 0 1 0 0 0 0 0 1

Explanation: To execute the BSET instruction, the CPU begins by reading port 4. Sihce P4
and P4 are input pins, the CPU reads the level of these pins directly, not the value in the port
data register. It reads Pds Low (0) and Pdas High (1).

Since P&to P& are output pins, for these pins the CPU reads the value in PDR4. The CPU
therefore reads the value of port 4 as H'40, although the actual value in PDR4 is H'80.

Next the CPU sets bit O of the read data to 1, changing the value to H'41.
Finally, the CPU writes this value (H'41) back to PDR4 to complete the BSET instruction.

As a result, bit 0 in PDR4 is set to 0, switching pif 4High output. However, bits 7 and 6
in PDR4 change their values.

19

1.3.3 Basic Instruction Formats

(1) Format of Data Transfer Instructions

Figure 1-5 shows the format used for data transfer instructions.

15 8
| op | m | n
15 8
| op m | 1)
15 8
op m | n
disp.
15 8
| op 'm n
15 8
| op | ' | abs.
15 8
op !
abs.
15 8
[op | M | IMM
15 8
op
IMM
15 8
I op I
Notation
op: Operation field
'm» '- Register field
disp: Displacement
abs.: Absolute address
IMM: Immediate data

MOV
Rm - Rn

Rn - @Rm, or @RM - Rn

@(d:16, Rm) - Rn, or
Rn - @(d:16, Rm)

@Rm+ - Rn,orRn - @-Rm

@aa:8 - Rn,orRn - @aa:8

@aa:16 - Rn, or
Rn - @aa:16

#xx:8 - Rn

#xx:16 - Rn

POP, PUSH

Figure 1-5. Instruction Format of Data Transfer Instructions

20

(2) Format of Arithmetic, Logic Operation, and Shift Instructions
Figure 1-6 shows the format used for arithmetic, logic operation, and shift instructions.

15 8 7 0
| op rm | rn | ADD, SUB, CMP (Rm)
ADDX, SUBX (Rm)
15 8 7 0
| op | rn | ADDS, SUBS, INC, DEC, DAA,
DAS, NEG, NOT
15 8 7 0
op rm 'n MULXU, DIVXU
15 8 7 0
| op [ry | IMM | ADD, ADDX, SUBX, CMP
(#xx:8)
15 8 7 0
| op | 'm n | AND, OR, XOR (Rm)
15 8 7 0
| op [rn] IMM | AND, OR, XOR (#xx:8)
15 8 7 0
| op n | SHAL, SHAR, SHLL, SHLR,
ROTL, ROTR, ROTXL, ROTXR
Notation
op: Operation field
'm n: Register field
IMM: Immediate data

Figure 1-6. Instruction Format of Arithmetic, Logic, and Shift Instructions

21

(3) Format of Bit Manipulation Instructions
Figure 1-7 shows the format used for bit manipulation instructions.

15 8

op IMM £
15 8

op | 'm n
15 8

op | M 0 00

op IMM 0 0O
15 8

op Mn 0 0O

op 'm 0 0O
15 8

op | abs.

op IMM | 0 0 0O
15 8

op abs.

op m | 0 0 0
15 8

op IMM | n
15 8

op | n 000

op IMM 0 0O
15 8

op | abs.

op IMM 0 0O
Notation
op: Operation field
"m» - Register field
abs.: Absolute address
IMM: Immediate data

BSET, BCLR, BNOT, BTST
Operand: register direct (Rn)
Bit No.: immediate (#xx:3

Operand: register direct (Rn)
Bit No.: register direct (Rm

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3

Operand: register indirect (@Rn)
Bit No.: register direct (Rm

Operand: absolute (@aa:8

Bit No.: immediate (#xx:3

Operand: absolute (@aa:8
Bit No.: register direct (Rm

BAND, BOR, BXOR, BLD, BST
Operand: register direct (Rn)
Bit No.: immediate (#xx:3

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3

Operand: absolute (@aa:8
Bit No.: immediate (#xx:3

Figure 1-7. Instruction Format of Bit Manipulation Instructions

22

15 8
op IMM 3!
15 8
op 1! 0 0
op IMM 0 0
15 8
op abs.
op IMM | 0 0
Notation
op: Operation field
'm 'n: Register field
abs.: Absolute address
IMM: Immediate data

BIAND, BIOR, BIXOR, BILD, BIS
Operand: register direct (Rn)
Bit No.: immediate (#xx:3

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3’

Operand: absolute (@aa:8

Bit No.: immediate (#xx:3’

Figure 1-7. Instruction Format of Bit Manipulation Instructions (Cont.)

23

(4) Format of Branching Instructions
Figure 1-8 shows the format used for branching instructions.

15 8 7

| op | cc | disp. Bcc

15 8 7

| op m | 0 0 0 (] IMP (@Rm)

15 8 7
op JMP (@aa:16)
abs.

15 8 7

| op | abs. JMP (@@aa:8)

15 8 7

| op | disp. BSR

15 8 7

| op 'm | 000 O] JSR (@Rm)

15 8 7
op JSR (@aa:16)
abs.

15 8 7

| op | abs. JSR (@@aa:8)

15 8 7

| op RTS

Notation

op: Operation field

cc: Condition field

Mm: Register field

disp.: Displacement

abs.: Absolute address

Figure 1-8. Instruction Format of Branching Instructions

24

(5) Format of System Control Instructions
Figure 1-9 shows the format used for system control instructions.

15 8 7
I op
15 8 7
| op n
15 8 7
| op | IMM
Notation
op: Operation field
M Register field
IMM: Immediate data

RTE, SLEEP, NOP

LDC, STC (Rn)

ANDC, ORC, XORC, LDC
(#xx:8)

(6) Format of Block Data Transfer Instruction

Figure 1-9. Instruction Format of System Control Instructions

Figure 1-10 shows the format used for the block data transfer instruction.

15

op

op

EEPMOV

Figure 1-10. Instruction Format of Block Data Transfer Instruction

25

1.3.4 Addressing Modes and Effective Address Calculation

Table 1-10 lists the eight addressing modes and their assembly-language notation. Each
instruction can use a specific subset of these addressing modes.

Arithmetic, logic, and shift instructions use register direct addressing (1). The ADD.B,
ADDX, SUBX, CMP.B, AND, OR, and XOR instructions can also use immediate addressing

(6).

The MOV instruction uses all the addressing modes except program-counter relative (7) and
memory indirect (8).

Bit manipulation instructions use register direct (1), register indirect (2), or absolute (5)
addressing to identify a byte operand and 3-bit immediate addressing to identify a bit within
the byte. The BSET, BCLR, BNOT, and BTST instructions can also use register direct
addressing (1) to identify the bit.

Table 1-10. Addressing Modes

No. Mode Notation
(1) Register direct Rn
(2) Register indirect @RnN
(3) Register indirect with 16-bit displacement @(d:16, Rn)
4) Register indirect with post-increment @RnN+
Register indirect with pre-decrement @-Rn
(5) Absolute address (8 or 16 bits) @aa:8, @aa:16
(6) Immediate (3-, 8-, or 16-bit data) #xX:3, #xx:8, #xx:16
(7) PC-relative (8-bit displacement) @(d:8, PC)
(8) Memory indirect @@aa:8

(1) Reqgister Direct—Rn: The register field of the instruction specifies an 8- or 16-bit general

register containing the operand. In most cases the general register is accessed as an 8-bit
register. Only the MOV.W, ADD.W, SUB.W, CMP.W, ADDS, SUBS, MULXU (8 Rjt8

bits), and DIVXU (16 bits + 8 bits) instructions have 16-bit operands.

(2) Reqister indirect—@Rn: The register field of the instruction specifies a 16-bit general
register containing the address of the operand.

26

(3) Register Indirect with Displacement—@(d:16, Rn):This mode, which is used only in
MOV instructions, is similar to register indirect but the instruction has a second word (bytes 3
and 4) which is added to the contents of the specified general register to obtain the operand
address. For the MOV.W instruction, the resulting address must be even.

(4) Register Indirect with Post-Increment or Pre-Decrement—@Rn+ or @—Rn:

* Register indirect with post-increment—@Rn+
The @Rn+ mode is used with MOV instructions that load registers from memory.
It is similar to the register indirect mode, but the 16-bit general register specified in the
register field of the instruction is incremented after the operand is accessed. The size of
the increment is 1 or 2 depending on the size of the operand: 1 for a byte operand; 2 for a
word operand. For a word operand, the original contents of the 16-bit general register
must be even.

* Register indirect with pre-decrement—@-Rn
The @—Rn mode is used with MOV instructions that store register contents to memory.
It is similar to the register indirect mode, but the 16-bit general register specified in the
register field of the instruction is decremented before the operand is accessed. The size of
the decrement is 1 or 2 depending on the size of the operand: 1 for a byte operand; 2 for a
word operand. For a word operand, the original contents of the 16-bit general register
must be even.

(5) Absolute Address—@aa:8 or @aa:16The instruction specifies the absolute address of
the operand in memory. The @aa:8 mode uses an 8-bit absolute address of the form H'FFxx.
The upper 8 bits are assumed to be 1, so the possible address range is H'FF00 to H'FFFF
(65280 to 65535). The MOV.B, MOV.W, JMP, and JSR instructions can use 16-bit absolute
addresses.

(6) Immediate—#xx:8 or #xx:16: The instruction contains an 8-bit operand in its second
byte, or a 16-bit operand in its third and fourth bytes. Only MOV.W instructions can contain
16-bit immediate values.

The ADDS and SUBS instructions implicitly contain the value 1 or 2 as immediate data.
Some bit manipulation instructions contain 3-bit immediate data (#xx:3) in the second or
fourth byte of the instruction, specifying a bit number.

27

(7) PC-Relative—@(d:8, PC): This mode is used to generate branch addresses in the Bcc
and BSR instructions. An 8-bit value in byte 2 of the instruction code is added as a sign-
extended value to the program counter contents. The result must be an even number. The
possible branching range is —126 to +128 bytes (—63 to +64 words) from the current address.

(8) Memory Indirect—@ @aa:8: This mode can be used by the JMP and JSR instructions.
The second byte of the instruction code specifies an 8-bit absolute address from H'0000 to
H'OOFF (0 to 255). Note that the initial part of the area from H'0000 to H'OOFF contains the
exception vector table. See the applicable hardware manual for details. The word located at
this address contains the branch address.

If an odd address is specified as a branch destination or as the operand address of a MOV.W
instruction, the least significant bit is regarded as 0, causing word access to be performed at th
address preceding the specified address. See the memory data structure description in sectiol
1.1.2, Data Structure.

Effective Address Calculation
Table 1-11 explains how the effective address is calculated in each addressing mode.

Table 1-11. Effective Address Calculation (1)

Addressing mode, Effective address Effective
No. instruction format calculation address
1 Register direct Rn None
3 0 3 0
15 87 43 0 | regml | regnl
oP | reg m| reg ni

Operands are contained il
registers m and n

2 Register indirect @Rn

15 0

16-bit register contents
15 76 |43 0 g 15 0

oP reg |

Y

Operand is at address
indicated by register

28

Table 1-11. Effective Address Calculation (2)

Addressing mode, Effective address Effective
No. instruction format calculation address
3 Register indirect with displacement
@(d:16, Rn)
15 0
16-bit register contents 15 0
+
15 76 43 0 —
op reg 16-bit displacement Operand address is sl
_ A of register contents ar
disp displacement
4 Register indirect with pre-decrement
@-Rn
15 0
\I H H
> 16-bit register contents
15 76| 43 o ; |_¢ 15 0
OP reg
Register is decremen
before operand acces
Register indirect with post-increment
@Rn+
15 0 15 0
15 . | 13 0 ;I 16-bit register contents %
op | e | | A Register is incremented
9 after operand access
* 1 for a byte operand,
2 for a word operand
5 Absolute address None
@aa:8
15 87 0
H'FF
15 87 0 | ¢ |
| OP abs H o
Operand address is in ran
from H'FFOO to H'FFFF
Absolute address
@aa:16
15 0 15 0
OP ¢
abs
Any addres

29

Table 1-11. Effective Address Calculation (3)

Addressing mode, Effective address Effective
No. instruction format calculation address
6 Immediate #xx:8. None
15 87 0
op MM Qperand is 1-byte
immediate data
Immediate #xx:16 None
15 0
OP Operand is 2-byte
IMM immediate data

7 PC-relative @(d:8, PC)

15 0

PC contents

15 87 0 Sign extension disp

OoP | disp H ¢

15

Destination address

8 Memory indirect @ @aa:8

15 87 0

15 87 y O

H'00 |

15 0
16-bit memory contents|—>

15

Destination address

reg, regm, regn: General register

op: Operation field
disp: Displacement
abs: Absolute address
IMM: Immediate data

30

Section 2. Instruction Set
2.1 Explanation Format

Section 2 gives full descriptions of all the H8/300L Series instructions, presenting them in
alphabetic order. Each instruction is explained in a table like the following:

ADD (add binary) (byte) ADD

Operation Condition Code
Rd + (EAs) - Rd

| H N Z V C
— |— T | =] T][

Assembly-Language Format

ADD.B <EAs>, Rd I: Previous value remains unchanged.

H: Setto 1 when there is a carry from bit 3;
otherwise cleared to 0.
. Set to 1 when the result is negative;
otherwise cleared to 0.
Z:. Setto 1 when the result is zero;
otherwise cleared to 0.
V. Setto 1 when an overflow occurs;
otherwise cleared to 0.
C. Setto 1 when there is a carry from bit 7;
otherwise cleared to 0.

Operand Size
Byte N

Description
This instruction adds the source operand to the contents of an 8-bit general register and place
the result in the general register .

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode 9 Mnem. Operands ,s\ltg:[eosf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ADD.B #xx:8,Rd | 8 | rd IMM 2
Register direct | ADD.B Rs, Rd 0 '8 rs | rd 2
| |

31

The parts of the table are explained below.
Name: The full and mnemonic names of the instruction are given at the top of the page.

Operation: The instruction is described in symbolic notation. The following symbols are used.

Symbol Meaning

Rd General register (destination)*

Rs General register (source)*

Rn General register*

<EAd> Destination operand

<EAs> Source operand

PC Program counter

SP Stack pointer

CCR Condition code register

N N (negative) flag of CCR

4 Z (zero) flag of CCR

\% V (overflow) flag of CCR

C C (carry) flag of CCR

disp Displacement

- Transfer from left operand to right operand; or state transition from left state to
right state.

+ Addition

- Subtraction

X Multiplication

+ Division

[AND logical

O OR logical

[Exclusive OR logical

- Inverse logic (logical complement)

()< > Contents of operand effective address

* General registers are either 8 bits (ROH/ROL - R7H/R7L) or 16 bits (RO - R7).

Assembly-Language Format:
The assembly-language codin ADD.B <EAs> Rd

of the instruction is given. AN \nemonic Size Source Destination
example is:

32

The operand size is indicated by the letter B (byte) or W (word). Some instructions have
restrictions on the size of operands they handle.

The abbreviation EAs or EAd (effective address of source or destination) is used for operands
that permit more than one addressing mode. The H8/300L CPU supports the following eight
addressing modes. The method of calculating effective addresses is explained in section 1.3.-
Addressing Modes and Effective Address Calculation, above.

Notation Addressing Mode

Rn Register direct

@RnN Register indirect

@(d:16, Rn) Register indirect with displacement

@Rn+/@ —Rn Register indirect with post-increment/pre-decrement
@aa:8/@aa:16 Absolute address

#xX:8/#xx:16 Immediate

@(d:8, PC) Program-counter relative

@@aa:8 Memory indirect

Operand size: Word or byte. Byte size is indicated for bit-manipulation instructions because
these instructions access a full byte in order to read or write one bit.

Condition code: The effect of instruction execution on the flag bits in CCR is indicated. The
following notation is used:

Symbol Meaning
t The flag is altered according to the result of the instruction.

0 The flag is cleared to "0."

— The flag is not changed.

* Not fixed; the flag is left in an unpredictable state.

Description: The action of the instruction is described in detalil.

33

Instruction Formats: Each possible format of the instruction is shown explicitly, indicating
the addressing mode, the object code, and the number of states required for execution when t
instruction and its operands are located in on-chip memory. The following symbols are used:

Symbol Meaning

Imm. Immediate data (3, 8, or 16 bits)
abs. An absolute address (8 bits or 16 bits)
disp. Displacement (8 bits or 16 bits)

rs, rd, m General register number (3 bits or 4 bits) The s, d, and n correspond to the letters
in the operand notation.

Register Designation: 16-bit general registers are indicated by a 3spitlror mvalue. 8-bit
registers are indicated by a 4-bitrd, or mvalue. Address registers used in the @Rn,

@(disp:16, Rn), @RNn+, and @—Rn addressing modes are always 16-bit registers. Data
registers are 8-bit or 16-bit registers depending on the size of the operand. For 8-bit registers,
the lower three bits ofrrd, or m give the register number. The most significant bit is 1 if the
lower byte of the register is used, or O if the upper byte is used. Registers are thus indicated a
follows:

16-Bit register 8-Bit registers
rs,rd, orrn Register rs,rd, orrn Register
000 RO 0000 ROH
001 R1 0001 R1H
111 R7 0111 R7H
1000 ROL
1001 R1L
1111 R7L

Bit Data Access: Bit data are accesscu

as the n-th bit of a byte operand in a general register or memory. The bit number is given by 2
bit immediate data, or by a value in a general register. When a bit number is specified in a
general register, only the lower three bits of the register are significant. Two examples are
shown below.

34

BSET R1L, R2H

R1L | don't care ‘071 1|

—— Bit number =3

R2H |01100101|

Bit 3issetto 1

BLD #5, @H'FF02:8

l

H'FF02 10100114
/_\/
Loaded to C (carry >|C
flag in CCR ’

The addressing mode and operand size apply to the register or memory byte containing the bi

Number of States Required for Execution: The number of states indicated is the number
required when the instruction and any memory operands are located in on-chip ROM or RAM.
If the instruction or an operand is located in external memory or the on-chip register field,
additional states are required for each access. See section 2.5, Number of Execution States.

35

2.2 Instructions

2.2.1 (1) ADD (add binary) (byte) ADD

Operation Condition Code

Rd + (EAs) - Rd | H N 7 V C
—|—]t | =t [t]t]

Assembly-Language Format

ADD.B <EAs>, Rd I: Previous value remains unchanged.

H: Setto 1 when there is a carry from bit 3;
Operand Size

Byte N

otherwise cleared to 0.
. Set to 1 when the result is negative;
otherwise cleared to 0.
Z:. Setto 1 when the result is zero;
otherwise cleared to 0.
V. Setto 1 when an overflow occurs;
otherwise cleared to 0.
C: Setto 1 when there is a carry from bit 7;
otherwise cleared to 0.

Description
This instruction adds the source operand to the contents of an 8-bit general register and place
the result in the general register .

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands [s\ltg'tg
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ADD.B | #xx:8,Rd |8 rd IMM 2
Register direct | ADD.B Rs, Rd 0 '8 rs | rd 2
| |

36

2.2.1 (2) ADD (add binary) (word) ADD

Operation Condition Code
Rd + Rs - Rd | H N Z V C
— =]t [—]t]t |t]

Assembly-Language Format

ADD.W Rs, Rd
I: Previous value remains unchanged.

H: Set to 1 when there is a carry from bit
11; otherwise cleared to O.

N: Set to 1 when the result is negative;
otherwise cleared to 0.

Z. Setto 1 when the result is zero;
otherwise cleared to 0.

V. Set to 1 when an overflow occurs;
otherwise cleared to 0.

C. Setto 1 when there is a carry from bit
15; otherwise cleared to 0.

Operand Size
Word

Description
This instruction adds word data in two general registers and places the result in the second
general register.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands ,s\ltg:[:sf
1stbyte | 2nd byte | 3rd byte | 4th byte
] T T
Register direct | ADD.W | Rs, Rd 0 19 |0rs0ird 2
L

37

2.2.2 ADDS (add with sign extension) ADDS
Operation Condition Code

Rd+1- Rd | H N 7 V C
Rd+2- Rd

Assembly-Language Format
ADDS #1, Rd
ADDS #2, Rd

Operand Size
Word

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

O<sNzI~

Description

This instruction adds the immediate value 1 or 2 to word data in a general register. Unlike the

ADD instruction, it does not affect the condition code flags.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands gg;[g
1stbyte | 2nd byte | 3rd byte | 4th byte
] T
Register direct | ADDS #1, Rd 0 i B| 0 0rd 2
! N
Register direct | ADDS #2, Rd 0 B| 8 0 2

Note: This instruction cannot access byte-size data.

38

2.2.3 ADDX (add with extend carry) ADDX

Operation Condition Code

Rd + (EAs) + C- Rd | H N Z V C

— =T |—]T T T |

Assembly-Language Format

ADDX <EAs>, Rd
I: Previous value remains unchanged.

Operand Size H: Setto 1 if there is a carry from bit 3;
Byte otherwise cleared to 0.
N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z:. Setto 1 when the result is zero;
otherwise cleared to 0.
V. Setto 1 when an overflow occurs;
otherwise cleared to 0.
C: Setto 1 when there is a carry from bit 7;
otherwise cleared to 0.

Description
This instruction adds the source operand and carry flag to the contents of an 8-bit general
register and places the result in the general register.

Instruction Formats and Number of Execution States

Addressin Instruction code
mode g Mnem. Operands ’s\ltgigsf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ADDX #xx:8,Rd |9 'rd IMM 2
Register direct | ADDX Rs, Rd 0 |E rs | rd 2

39

2.2.4 AND (AND logical) AND

Operation Condition Code

—|[—|—=]—=]t []O|—

Assembly-Language Format
AND <EAs>, Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Setto 1 when the result is negative;

otherwise cleared to 0.

Z: Setto 1 when the result is zero;

otherwise cleared to 0.
Cleared to O.
C: Previous value remains unchanged.

<

Description
This instruction ANDs the source operand with the contents of an 8-bit general register and
places the result in the general register.

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode g Mnem. Operands ls\ltgieosf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate AND #xx:8,Rd | E Ird IMM 2
Register direct | AND Rs, Rd 1 6 rs | rd 2

40

2.2.5 ANDC (AND control register) ANDC

Operation Condition Code
CCRO#IMM - CCR

I H N Z V C
O R

Assembly-Language Format
ANDC #xx:8, CCR
ANDed with bit 7 of the immediate data.

I
Operand Size H: ANDed with bit 5 of the immediate data.
Byte N: ANDed with bit 3 of the immediate data.
Z: ANDed with bit 2 of the immediate data.
V: ANDed with bit 1 of the immediate data.
C: ANDed with bit O of the immediate data.
Description

This instruction ANDs the condition code register (CCR) with immediate data and places the
result in the condition code register. Bits 6 and 4 are ANDed as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, including
the nonmaskable interrupt (NMI), are deferred until after the next instruction.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode 9 Mnem. Operands ,s\ltg:[eosf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ANDC #xx:8,CCR| 0 |6 IMM 2

41

2.2.6 BAND (bit AND) BAND

Operation Condition Code
cO (<B|t No.> of <EAd>) - C I H N Z V C

il el el el el el I

Assembly-Language Format
BAND #xx:3, <EAd>
Previous value remains unchanged.

I
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V. Previous value remains unchanged.
C: ANDed with the specified bit.
Description

This instruction ANDs a specified bit with the carry flag and places the result in the carry flag.
The specified bit can be located in a general register or memory. The bit number is specified
by 3-bit immediate data. The operation is shown schematically below.

BitNo. 7 P37 0
1 1 1

<EAd>*- Byte data in register or memc D L
]~

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

gtlzreessmg Mnem. | Operands Instruction code Sth-t:Sf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BAND |#xx:3, Rd 7 i 6 OiIMMi rd 2
Register indirect | BAND |#xx:3,@Rd 7 i C Oird i 0 7 % 6 OilMMi 0 6
Absolute address| BAND |#xx:3,@aa:8 | 7 i E abs 7 % 6 OilMMi 0 6

* Register direct, register indirect, or absolute addressing.

42

2.2.7 Bcc (branch conditionally) Bcc

Operation Condition Code

If cc then | H N Z V C
PC +d:8- PC

else next;

Assembly-Language Format
Bcc d:8
‘T5condition code field
(For mnemonics, see the table on the
next page.)

Operand Size

O<SNZI-=

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

43

Bcc (branch conditionally) Bcc
Description

If the specified condition is false, this instruction does nothing; the next instruction is executed.

If the specified condition is true, a signed displacement is added to the address of the next
instruction and execution branches to the resulting address.

The displacement is a signed 8-bit value which must be even. The branch destination addres:
can be located in the range —126 to +128 bytes from the address of the Bcc instruction.

The applicable conditions and their mnemonics are given below.

Mnemonic cc Field Description Condition Meaning
BRA (BT) 0000 Always (True) Always true
BRN (BF) 0001 Never (False) Never
BHI 0010 High alz=0 X>Y (Unsigned)
BLS 0011 Low or Same dz=1 X<Y (Unsigned)
BCC(BHS) | 0100 Carry Clear C=0 XY (Unsigned)

(High or Same)
BCS (BLO) 0101 Carry Set (Low) =1 X <Y (Unsigned
BNE 0110 Not Equal Z=0 XY (Signed or
unsigned)
BEQ 0111 Equal Z=1 X =Y (Signed or
unsigned)

BVC 1000 Overflow Clear V=0
BVS 1001 Overflow Set V=1
BPL 1010 Plus N=0
BMI 1011 Minus N=1
BGE 1100 Greater or Equal] NV =0 X=Y (Signed)
BLT 1101 Less Than NV=1 X <Y (Signed)
BGT 1110 Greater Than I(NOV)=0 | X>Y (Signed)
BLE 1111 Less or Equal INOV)=1 | X<Y (Signed)

BT, BF, BHS, and BLO are synonyms for BRA, BRN, BCC, and BCS, respectively.

44

Bcc (branch conditionally) Bcc

Instruction Formats and Number of Execution States
Adressing Instruction code No . of
mode Mnem. | Operands |)\ 1o ondbyte | 3rdbyte | 4thbyte | states
PC relative BRA (BT) d:8 4 0 disp. 4
PC relative BRN (BF) d:8 4 1 disp. 4
PC relative BHI d:8 4 2 disp. 4
PC relative BLS d:8 4 3 disp. 4
PC relative BCC (BHS) d:8 4 4 disp. 4
PC relative BCS (BLO) d:8 4 5 disp. 4
PC relative BNE d:8 4 6 disp. 4
PC relative BEQ d:8 4 7 disp. 4
PC relative BVC d:8 4 8 disp. 4
PC relative BVS d:8 4 9 disp. 4
PC relative BPL d:8 4 A disp. 4
PC relative BMI d:8 4 B disp. 4
PC relative BGE d:8 4 C disp. 4
PC relative BLT d:8 4 D disp. 4
PC relative BGT d:8 4 E disp. 4
PC relative BLE d:8 4 F disp. 4

* The branch address must be even.

45

2.2.8 BCLR (bit clear) BCLR
Operation Condition Code

0 - (<Bit No.> of <EAd>)

| H N Z V C

Assembly-Language Format

BCLR #xx:3, <EAd> Previous value remains unchanged.

I
BCLR Rn, <EAd> H: Previous value remains unchanged.
N: Previous value remains unchanged.
Operand Size Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction clears a specified bit in the destination operand to 0. The bit number can be

specified by 3-bit immediate data, or by the lower three bits of an 8-bit general register. The

destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

#xx:3 or Rn—
Bit No. 7 i

<EAd>*- Byte data in register or memc N

|
0

* Register direct, register indirect, or absolute addressing.

46

BCLR (bit clear) BCLR
Instruction Formats and Number of Execution States
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BCLR |#xx:3,Rd 7 i 2 0% IMM% rd 2
Register indirect | BCLR |#xx:3,@Rd 7 i D Oi rdi 0 7 % 2 0% IMM% 0 8
Absolute address| BCLR |#xx:3,@aa:8 | 7 i F abs 7 i 2 0% IMM% 0 8
Register direct BCLR |Rn, Rd 6 i 2 m i rd 2
Register indirect | BCLR |Rn, @Rd 7 i D Oi rd i 0 6 i 2 m i 0 8
Absolute address| BCLR |Rn, @aa:8 7 i F abs 6 i 2 rn i 0 8

47

2.2.9 BIAND (bit invert AND) BIAND
Operation Condition Code
CU - (<Bit No.> of <EAd>)] - C | H N 7 V C

Assembly-Language Format
BIAND #xx:3, <EAd>

— | == —=|—=|=|—]:

Previous value remains unchanged.

I:

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Byte Z: Previous value remains unchanged.

V. Previous value remains unchanged.

C: ANDed with the inverse of the specified

bit.

Description

This instruction ANDs the inverse of a specified bit with the carry flag and places the result in
the carry flag. The specified bit can be located in a general register or memory. The bit

number is specified by 3-bit immediate data.

The operation is shown schematically below.

Bit No. 7 X377 0
1 1 1 \J

<EAd>*- Byte data in register or memc

11 1 1111

The value of the specified bit is not changed.

[0~

Instruction Formats and Number of Execution States

g%%rjssmg Mnem. | Operands Instruction code g‘tg;[:;
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BIAND | #xx:3, Rd 7 i 6 1§IMM§ rd 2
Register indirect | BIAND |#xx:3,@Rd 7 i C Oi rd i 0 7 % 6 1§IMM§ 0 6
Absolute address| BIAND |#xx:3,@aa:8 | 7 i E abs 7 i 6 lilMMi 0 6

48

Register direct, register indirect, or absolute addressing.

2.2.10 BILD (bit invert load) BILD
Operation Condition Code
- (<B|t No.> of <EAd>)—> C [H N Z V C

—|—|—|—=|—=|=|—]:

Assembly-Language Format

BILD #xx:3, <EAd> . .
Previous value remains unchanged.

I
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.

Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Loaded with the inverse of the specified

bit.

Description

This instruction loads the inverse of a specified bit into the carry flag. The specified bit can be
located in a general register or memory. The bit number is specified by 3-bit immediate data.
The operation is shown schematically below.

Bit No 7 #xx:Bj 0
I 1 I 1 I
<EAd>*- Byte data in register or memc

p - 11

11 |
41verl—> C

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

gocl:iljreessmg mnem. | Operands Instruction code Sth-teO;
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BILD |#xx:3, Rd 7 i 7 lilMMi rd 2
Register indirect | BILD |#xx:3,@Rd | 7 C 0 d 0 |7 7 1§|MM§ 0 6
Absolute address| BILD |#xx:3,@aa:8 | 7 i E abs 7 i 7 1§IMM§ 0 6

* Register direct, register indirect, or absolute addressing.

49

2.2.11 BIOR (bit invert inclusive OR) BIOR

Operation Condition Code
cto [ﬂ (<B|t No.> of <EAd>)] - C I H N Z V C

— | — === |=|—]:

Assembly-Language Format

BIOR #xx:3, <EAd> . .
Previous value remains unchanged.

I

Operand Size H: Previous value remains unchanged.

Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: ORed with the inverse of the specified

bit.
Description

This instruction ORs the inverse of a specified bit with the carry flag and places the result in
the carry flag. The specified bit can be located in a general register or memory. The bit
number is specified by 3-bit immediate data. The operation is shown schematically below.

HXX:
Bit No. 7 3 v 0
1 I I

<EAd>*- Byte data in register or memc

1 1 | (11 1

D0

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

gi?jr:ssmg vnem. | Operands Instruction code g‘;igg
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BIOR |#xx:3, Rd 7 i 4 11 IMM% rd 2
Register indirect | BIOR |#xx:3,@Rd | 7 C 0 0 |7 4 1§|MM§ 0o 6
Absolute address| BIOR |#xx:3,@aa:8 | 7 i E abs 7 i 4 l%IMMi 0 6

* Register direct, register indirect, or absolute addressing.

50

2.2.12 BIST (bit invert store) BIST

Operation Condition Code

Assembly-Language Format

BIST #xx:3, <EAd>
Previous value remains unchanged.

I:
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V. Previous value remains unchanged.
C:. Previous value remains unchanged.
Description

This instruction stores the inverse of the carry flag to a specified bit location in a general
register or memory. The bit number is specified by 3-bit immediate data. The operation is
shown schematically below.

BitNo. 7373 0
I I I
<EAd>*- Byte data in register or memc X

11 |
C:|—>Invertx

The values of the unspecified bits are not changed.

Instruction Formats and Number of Execution States

ﬁg%fssmg Mnem. | Operands Instruction code 'S\'tg;[eosf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BIST |#xx:3, Rd 6 i 7 1§IMM§ rd 2
Register indirect | BIST |#xx:3,@Rd 7 i D Oi rd i 0 6 % 7 1% IMM% 0 8
Absolute address| BIST |#xx:3,@aa:8 | 7 i F abs 6 i 7 1% IMM% 0 8

* Register direct, register indirect, or absolute addressing.

51

2.2.13 BIXOR (bit invert exclusive OR)

Operation
CU [~ (<Bit No.> of <EAd>)] - C

Assembly-Language Format
BIXOR #xx:3, <EAd>

Condition Code
| H N Z V C

il Bl el el el el B

Previous value remains unchanged.

I:

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Byte Z: Previous value remains unchanged.

V. Previous value remains unchanged.

C: Exclusive-ORed with the inverse of the

specified bit.

Description

This instruction exclusive-ORs the inverse of a specified bit with the carry flag and places the
result in the carry flag. The specified bit can be located in a general register or memory. The
bit number is specified by 3-bit immediate data. The operation is shown schematically below.

Bit No.
<EAd>*- Byte data in register or memc

The value of the specified bit is not changed.

7 #xx:3—¢ 0
1 1 1 1 1

11 1 111 1

Y
v

Invert

I

Instruction Formats and Number of Execution States

gocl)c(ijreessmg Mnem. | Operands Instruction code ggig;
1stbyte | 2nd byte 3rd byte | 4th byte
Register direct BIXOR | #xx:3, Rd 7 15 1§|MM§ rd 2
Register indirect | BIXOR |#xx:3,@Rd | 7 C o d 0 |7 5 1§|MM§ 0 6
Absolute address| BIXOR |#xx:3,@aa:8 | 7 i E abs 7 i 5 1§IMM§ 0 6

* Register direct, register indirect, or absolute addressing.

52

2.2.14 BLD (bit load) BLD
Operation Condition Code
(<B|t No.> of <EAd>) - C I H N Z V C

— | == ===

Assembly-Language Format

BLD #xx:3, <EAd> Previous value remains unchanged.

I

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Byte Z: Previous value remains unchanged.

V. Previous value remains unchanged.

C: Loaded with the specified bit.
Description

This instruction loads a specified bit into the carry flag. The specified bit can be located in a
general register or memory. The bit number is specified by 3-bit immediate data. The
operation is shown schematically below.

BitNo. 7 737 0
1 1 1

<EAd>*- Byte data in register or memc Ly
— e

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Q%Cgeessmg vnem. | Operands Instruction code ’s\'tg'tg
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BLD #xx:3, Rd 7 i 7 0% IMM% rd 2
Register indirect | BLD #xx:3,@Rd 7 i C 0% rd i 0 7 % 7 0% IMM% 0 6
Absolute address| BLD #xx:3,@aa:8 | 7 i E abs 7 i 7 O% IMM% 0 6

* Register direct, register indirect, or absolute addressing.

53

2.2.15 BNOT (bit NOT) BNOT

Operation Condition Code
- (<B|t No.> of <EAd>) I H N Z V C
- (<Bit No.> of <EAd>)

Assembly-Language Format

Previous value remains unchanged.
BNOT #xx:3, <EAd>

I:

H: Previous value remains unchanged.
BNOT Rn, <EAd> _ . .

N: Previous value remains unchanged.

- Z: Previous value remains unchanged.

Operand Size . . .

V. Previous value remains unchanged.
Byte C:. Previous value remains unchanged.
Description

This instruction inverts a specified bit in a general register or memory location. The bit
number is specified by 3-bit immediate data, or by the lower three-bits of a general register.
The operation is shown schematically below.

#xx:3 or Rn
Bit No. 7 —i 0

<EAd>*- Byte data in register or memc

Y A N |

4Invertx

The bit is not tested before being inverted. The condition code flags are not altered.

* Register direct, register indirect, or absolute addressing.

54

BNOT (bit NOT) BNOT
Instruction Formats and Number of Execution States
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BNOT |#xx:3, Rd 7 i 1 0% IMM% rd 2
Register indirect | BNOT |#xx:3,@Rd 7 i D 0% rd i 0 7 i 1 0% IMM% 0 8
Absolute address| BNOT |#xx:3,@aa:8 | 7 i F abs 7 i 1 0% IMM% 0 8
Register direct BNOT |Rn, Rd 6 i 1 m i rd 2
Register indirect | BNOT |Rn, @Rd 7 i D 0% rd i 0 6 % 1 m % 0 8
Absolute address| BNOT |Rn, @aa:8 7 i F abs 6 % 1 m % 0 8

55

2.2.16 BOR (bit inclusive OR) BOR
Operation Condition Code
C O(<Bit No.> of <EAd>) - C | 4 N 7 V C

Assembly-Language Format
BOR #xx:3, <EAd>

Previous value remains unchanged.

I:
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: ORed with the specified bit.
Description

This instruction ORs a specified bit with the carry flag and places the result in the carry flag.
The specified bit can be located in a general register or memory. The bit number is specified
by 3-bit immediate data. The operation is shown schematically below.

Bit No. 7 X3y

<EAd>*- Byte data in register or memc

The value of the specified bit is not changed.

Y;

Instruction Formats and Number of Execution States

gi?jrgssmg Mnem. | Operands Instruction code ’S\Itgig
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BOR |#xx:3, Rd 7 i 4 0% IMM% rd 2
Register indirect | BOR #xx:3,@Rd 7 i C Oi rd i 0 7 % 4 OilMMi 0 6
Absolute address| BOR #xx:3,@aa:8 | 7 i E abs 7 % 4 0% IMM% 0 6

* Register direct, register indirect, or absolute addressing.

56

2.2.17 BSET (bit set) BSET
Operation Condition Code
1 - (<Bit No.> of <EAd>) | H N Zz V C

Assembly-Language Format
BSET #xx:3,<EAd>
BSET Rn,<EAd>

Previous value remains unchanged.

I:
H: Previous value remains unchanged.
. N: Previous value remains unchanged.
Operand Size _)
Byte Z:. Previous value remains unchanged.
V. Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction sets a specified bit in the destination operand to 1. The bit number can be
specified by 3-bit immediate data, or by the lower three-bits of an 8-bit general register. The
destination operand can be located in a general register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

#xx:3 or Rn

Bit No.
<EAd>*- Byte data in register or memc

N R

[N |

|
1

* Register direct, register indirect, or absolute addressing.

57

BSET (bit set) BSET
Instruction Formats and Number of Execution States
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BSET |#xx:3, Rd 7 i 0 Oi IMM% rd 2
Register indirect | BSET |#xx:3,@Rd 7 i D Oi rd i 0 7 % 0 Oi IMM% 0 8
Absolute address| BSET |#xx:3,@aa:8 | 7 i F abs 7 i 0 Oi IMM% 0 8
Register direct BSET |Rn, Rd 6 i 0 m i rd 2
Register indirect | BSET |Rn, @Rd 7 i D Oi rd i 0 6 i 0 m % 0 8
Absolute address| BSET |Rn, @aa:8 7 i F abs 6 i 0 m % 0 8

58

2.2.18 BSR (branch to subroutine) BSR

Operation Condition Code
PC- @-SP | H N Z V C
PC +d:8- PC

Assembly-Language Format
BSR d:8 Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

Previous value remains unchanged.

Operand Size

O<SNZI-=

Description

This instruction pushes the program counter (PC) value onto the stack, then adds a specified
displacement to the program counter value and branches to the resulting address. The progre
counter value used is the address of the instruction following the BSR instruction.

The displacement is a signed 8-bit value which must be even. The possible branching range i
—126 to +128 bytes from the address of the BSR instruction.

Instruction Formats and Number of Execution States

i Instruction code
Addressin
mode g Mnem. Operands ls\ltg't:sf
1st byte | 2nd byte | 3rd byte | 4th byte
PC-relative BSR d:8 5 |5 disp 6
L

59

2.2.19 BST (bit store) BST

Operation Condition Code
C - (<B|t No.> of <EAd>) | H N Z V C

Assembly-Language Format
BST #xx:3, <EAd>
Previous value remains unchanged.

I:
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V. Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction stores the carry flag to a specified flag location in a general register or
memory. The bit number is specified by 3-bit immediate data. The operation is shown
schematically below.

Bit No.
<EAd>*- Byte data in register or memc

7 #xx:3—¢ 0

Instruction Formats and Number of Execution States

giﬂrsssmg Mnem. | Operands Instruction code ’S\'tg'tgsf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BST #xx:3, Rd 6 i 7 0% IMM% rd 2
Register indirect | BST #xx:3,@Rd 7 % D 0% rd i 0 6 % 7 OilMMi 0 8
Absolute address| BST #xx:3,@aa:8 | 7 i F abs 6 i 7 0% IMM% 0 8

* Register direct, register indirect, or absolute addressing.

60

2.2.20 BTST (bit test) BTST
Operation Condition Code
- (<B|t No.> of <EAd>)—> Z I H N Z V C

Assembly-Language Format
BTST #xx:3, <EAd>
BTST Rn, <EAd>

_ | — | — _] —) _] —

Previous value remains unchanged.

K

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Byte Z: Setto 1 when the specified bit is zero;

otherwise cleared to 0.

V. Previous value remains unchanged.

C: Previous value remains unchanged.
Description

This instruction tests a specified bit in a general register or memory location and sets or clears
the Zero flag accordingly. The bit number can be specified by 3-bit immediate data, or by the
lower three bits of an 8-bit general register. The operation is shown schematically below.

<EAd>*- Byte data in register or memc

#xx:3 or Rn
7 N 0

The value of the specified bit is not altered.

* Register direct, register indirect, or absolute addressing.

61

BTST (bit test) BTST
Instruction Formats and Number of Execution States
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BTST | #xx:3, Rd 7 i 3 0% IMM% rd 2
Register indirect | BTST | #xx:3,@Rd 7 % C 0% rd i 0 7 % 3 OiIMMi 0 6
Absolute address| BTST |#xx:3,@aa:8 | 7 i E abs 7 i 3 OilMMi 0 6
Register direct BTST |Rn, Rd 6 i 3 m i rd 2
Register indirect | BTST | Rn, @Rd 7 % C 0% rd i 0 6 i 3 m % 0 6
Absolute address| BTST | Rn, @aa:8 7 i E abs 6 % 3 m i 0 6

62

2.2.21 BXOR (bit exclusive OR) BXOR

Operation Condition Code

— | == ===]—=]

Assembly-Language Format
BXOR #xx:3, <EAd>
Previous value remains unchanged.

I
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Exclusive-ORed with the specified bit.
Description

This instruction exclusive-ORs a specified bit with the carry flag and places the result in the
carry flag. The specified bit can be located in a general register or memory. The bit number is
specified by 3-bit immediate data. The operation is shown schematically below.

Bit No. 7 P37 0
I I I

<EAd>*- Byte data in register or memc

v

D00

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

gotlgreessmg Mnem. | Operands Instruction code ggigg
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BXOR | #xx:3, Rd 7 i 5 01 IMM% rd 2
Register indirect | BXOR | #xx:3,@Rd | 7 C o rd 0 | 7 5 o IMM% 0 6
Absolute address | BXOR | #xx:3,@aa:8 | 7 i E abs 7 i 5 0% IMM% 0 6

* Register direct, register indirect, or absolute addressing.

63

2.2.22 (1) CMP (compare) (byte) CMP
Operation Condition Code
Rd — (EAs); set condition code

| H N Z V C
— |— |t |—] T[T T |

Assembly-Language Format

CMP.B <EAs>, Rd I: Previous value remains unchanged.

H: Setto 1 when there is a borrow from bit
3; otherwise cleared to 0.
. Set to 1 when the result is negative;
otherwise cleared to 0.
Z:. Setto 1 when the result is zero;
otherwise cleared to 0.
V. Setto 1 when an overflow occurs;
otherwise cleared to 0.

Operand Size
Byte N

C: Setto 1 when there is a borrow from bit
7: otherwise cleared to 0.

Description

This instruction subtracts an 8-bit source register or immediate data from an 8-bit destination
register and sets the condition code flags according to the result. The destination register is n
altered.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands [s\ltgie()g
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate CMPB |#x8Rd |A I rd | IMM 2
Register direct | CMP.B Rs, Rd 1 'C|rs | 2
| |

64

2.2.22 (2) CMP (compare) (word) CMP

Operation Condition Code

Rd —Rs; set condition code | H N Z V C

— |— [t | —T] |T |

Assembly-Language Format
CMP.WRs, Rd
I: Previous value remains unchanged.
Operand Size H: Setto 1 when there is a borrow from bit
Word 11; otherwise cleared to O.
N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z. Setto 1 when the result is zero;
otherwise cleared to 0.
V. Set to 1 when an overflow occurs;
otherwise cleared to 0.

C: Set to 1 when there is a borrow from bit
15:; otherwise cleared to O.

Description
This instruction subtracts a source register from a destination register and sets the condition
code flags according to the result. The destination register is not altered.

Instruction Formats and Number of Execution States

. Instruction code
Addressin
mode g Mnem. Operands sNtzoiieE);
1stbyte | 2nd byte | 3rd byte | 4th byte
Register direct | CMPW | Rs, Rd 1 iD |0rs i0rd 2

65

2.2.23 DAA (decimal adjust add)

Operation
Rd (decimal adjust)- Rd

Assembly-Language Format
DAA Rd

Operand Size
Byte

Condition Code

H

N

*

I: Previous value remains unchanged.

H: Unpredictable.

N: Set to 1 when the adjusted result is
negative; otherwise cleared to O.
Z: Setto 1 when the adjusted result is zero;

otherwise cleared to 0.
V: Unpredictable.

Q

Set to 1 when there is a carry from bit 7;

otherwise left unchanged.

Description

When the result of an addition operation performed by the ADD.B or ADDX instruction on 4-
bit BCD data is contained in an 8-bit general register and the carry and half-carry flags, the
DAA instruction adjusts the result by adding H'00, H'06, H'60, or H'66 to the general register

according to the table below.

Valid results are not assured if this instruction is executed under conditions other than those

stated above.

Status before adjustment value Resulting
Cflag = Upper nibble| Hflag | Lower nibble added | Cflag
0 0-9 0 0-9 H'00 0
0 0-8 0 A-F H'06 0
0 0-9 1 0-3 H'06 0
0 A-F 0 0-9 H'60 1
0 9 —-F 0 A-F H'66 1
0 A-F 1 0-3 H'66 1
1 0-2 0 0-9 H'60 1
1 0-2 0 A-F H'66 1
1 0-3 1 0-3 H'66 1

66

DAA (decimal adjust add) DAA

Instruction Formats and Number of Execution States

: Instruction code
Addressin
mode g Mnem. | Operands sth'tgsf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct DAA Rd 0 i F 0 i rd 2

67

2.2.24 DAS (decimal adjust subtract) DAS

Operation Condition Code
Rd (decimal adjust)> Rd | H N Z V C

— | — | * =1t |*|—

Assembly-Language Format

DAS Rd I: Previous value remains unchanged.
H: Unpredictable.
Operand Size N: Set to 1 when the adjusted result is
Byte negative; otherwise cleared to 0.
Z:. Setto 1 when the adjusted result is zero;
otherwise cleared to 0.
V. Unpredictable.
C: Previous value remains unchanged.
Description

When the result of a subtraction operation performed by the SUB.B, SUBX, or NEG
instruction on 4-bit BCD data is contained in an 8-bit general register and the carry and half-
carry flags, the DAA instruction adjusts the result by adding H'00, H'FA, H'AOQ, or H'9A to the
general register according to the table below.

Valid results are not assured if this instruction is executed under conditions other than those
stated above.

Status before adjustment value Resulting

Cflag | Upper nibble| Hflag | Lower nibble| added | Cflag

0 0-9 0 0-9 H'00 0
0 0-8 1 6-F H'FA 0
1 7—-F 0 0-9 H'AO 1
1 6-F 1 6-F H'9A 1

68

DAS (decimal adjust subtract) DAS
Instruction Formats and Number of Execution States
. Instruction code
Addressin
mode g Mnem. | Operands ’s\ltg-teosf
1stbyte | 2nd byte | 3rd byte | 4th byte
Regjister direct DAS Rd 1 i F 2

0 I rd

69

2.2.25 DEC (decrement) DEC

Operation Condition Code
Rd-1- Rd

I H N Z V C
— ===t |t |t]—=

Assembly-Language Format
DEC Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Setto 1 when the result is negative;
otherwise cleared to 0.
Z:. Setto 1 when the result is zero;
otherwise cleared to 0.
V. Setto 1 when an overflow occurs (the
previous value in Rd was H'80);
otherwise cleared to 0.
C: Previous value remains unchanged.

Description
This instruction decrements an 8-bit general register and places the result in the general
register.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands Sth'tgg
1st byte 2nd byte | 3rd byte | 4th byte
Register direct DEC Rd 1 i A 0 'rd 2

70

2.2.26 DIVXU (divide extend as unsigned) DIVXU

Operation Condition Code
Rd=Rs~ Rd | H N Z V C
===l |1 ==
Assembly-Language Format
DIVXU Rs, Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Setto 1 when the divisor is negative;
otherwise cleared to 0.
Z: Cleared to 0 when diviser0O;
otherwise not guaranteed.
V. Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction divides a 16-bit general register by an 8-bit general register and places the
result in the 16-bit general register. The quotient is placed in the lower byte. The remainder is
placed in the upper byte. The operation is shown schematically below.

Rd
/—/H
Rd Rs (RdH) (RdL)
Dividend - Divisor - Remainder| Quotient
16 bits 8 bhits 8 bits 8 bits

Valid results (Rd, N, Z) are not assured if division by zero is attempted or an overflow occurs.
Division by zero is indicated in the Zero flag. Overflow can be avoided by the coding shown
on the next page.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode 9 Mnem. | Operands Sth'thf
1st byte | 2nd byte 3rd byte | 4th byte
| T [l
Register direct DIVXU | Rs, Rd 5 11 rs 10ird 14

71

DIVXU (divide extend as unsigned) DIVXU

Note: DIVXU Overflow
Since the DIVXU instruction performs 16-bit + 8-bit 8-bit division, an overflow will occur

if the divisor byte is equal to or less than the upper byte of the dividend. For example, H'FFFF
+H'01 - H'FFFF causes an overflow. (The quotient has more than 8 bits.)

Overflows can be avoided by using a subprogram like the following. A work register is
required.

To perform
DIVXU ROL, R1: ROL Divisor
MOV.B #H'00, R2H R1 Dividend
CMP.B ROL, R1H V
BCC L1 R1| Remainder Quotient (*1)
DIVXU ROL, R1 (1) v
MOV.B R1L, R2L R1 Dividend
BRA L2 R2 H'00 Dividend (High)| (*2)
L1 MOV.B R1H, R2L (*2) ¢
DIVXU ROL, R2 R1 | Partial remainder| Dividend (Low)
MOV.B R2H, R1H (*3)
DIVXU ROL, R1 R2 | Partial remaindel| Quotient (High)| (*3)
MOV.B R2L, R2H >
MOV.B R1L, R2L - -
R1 Remainder Quotient (Low)
L2 RTS (*4)
R2 Quotient (*4)

72

2.2.27 EEPMOV (move data to EEPROM) EEPMOV

Operation Condition Code
if R4L # 0 then | H N Z V C
repeat @R5+ @RG6+ IR .
R4L -1 - R4L
until R4L =0
else next; Previous value remains unchanged.

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

Assembly-Language Format
EEPMOV

OsSNZI-

Operand Size

Description

This instruction moves a block of data from the memory location specified in general register
R5 to the memory location specified in general register R6. General register R4L gives the
byte length of the block.

Data are transferred a byte at a time. After each byte transfer, R5 and R6 are incremented an
RA4L is decremented. When R4L reaches 0, the transfer ends and the next instruction is
executed. No interrupt requests are accepted during the data transfer.

At the end of this instruction, R4L contains H'00. R5 and R6 contain the last transfer address
+1.

The memory locations specified by general registers R5 and R6 are read before the block
transfer is performed.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. Operands states
1st byte | 2nd byte 3rd byte 4th byte

— EEPMOV 7 /B |5 | C 5 19 | 8 | F |9
| | L

* n is the initial value in R4L (& n< 255). Although n bytes of data are transferred, memory
is accessed 2(n+1) times, requiring 4(n+1) states.

73

2.2.28 INC (increment) INC
Operation Condition Code

Assembly-Language Format

INC Rd

Operand Size
Byte

— | ===t |t]s]—=

Previous value remains unchanged.
Previous value remains unchanged.
Set to 1 when the result is negative;
otherwise cleared to 0.

Set to 1 when the result is zero;
otherwise cleared to 0.

Set to 1 when an overflow occurs (the
previous value in Rd was H'7F);
otherwise cleared to 0.

Previous value remains unchanged.

Description

This instruction increments an 8-bit general register and places the result in the general

register.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of

mode Mnem. Operands states
1st byte 2nd byte | 3rd byte 4th byte

Register direct | INC Rd 0 i Al 0 | rd 2

74

2.2.29 JMP (jump) JMP
Operation Condition Code

EAd) - P

(EAD) c I H N Z V C

Assembly-Language Format

JMP <EA>

Operand Size

O<sNZZI

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

Description

This instruction branches unconditionally to a specified destination address.

The destination address must be even.

Instruction Formats and Number of Execution States

Instruction code

ﬁ\g%f ssing Mnem. Operands sNtca)\ie()sf
1stbyte | 2nd byte | 3rd byte | 4th byte
Register indirect | IMP @RnN 5 i 9 0‘ mn i 0 4
Absolute address| JMP @aa:16 5 i Al DO i 0 abs. 6
Memory indirect | IMP @@aa:8 5 i B abs. 8

75

2.2.30 JSR (Jump to subroutine) JSR

Operation Condition Code
PC- @-SP | H N Z V C
(EAd) -~ PC

Assembly-Language Format
JSR <EA> Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

Previous value remains unchanged.

Operand Size

s Nz~

Description

This instruction pushes the program counter onto the stack, then branches to a specified
destination address. The program counter value pushed on the stack is the address of the
instruction following the JSR instruction. The destination address must be even.

Instruction Formats and Number of Execution States

Q%%rgssmg Mnem. | Operands Instruction code ggigg
1st byte | 2nd byte | 3rd byte | 4th byte
Register indirect | JSR @Rn 5 i D 0% rn i 0 6
Absolute address| JSR @aa:16 5 i E| O i 0 abs. 8
Memory indirect | JSR @@aa:8 5 i F abs. 8

76

2.2.31 LDC (load to control register) LDC

Operation Condition Code
(EAs) - CCR | H N Z V C

! 7 ! 113 T 1t !

Assembly-Language Format
LDC <EAs>, CCR
Loaded from the source operand.

I:
Operand Size H: Loaded from the source operand.
Byte N: Loaded from the source operand.
Z: Loaded from the source operand.
V: Loaded from the source operand.
C: Loaded from the source operand.
Description

This instruction loads the source operand contents into the condition code register (CCR). Bit
4 and 6 are loaded as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts are
deferred until after the next instruction.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. Operands states
1st byte | 2nd byte 3rd byte 4th byte
|
Immediate LDC #xx:8,CCR| 0 | 7 IMM 2
| [l
Register direct LDC Rs, CCR 0 3 0 i rs 2

77

2.2.32 (1) MOV (move data) (byte) MOV

Operation Condition Code
Rs -~ Rd | H N Z V C
— | ===t]t |O|—

Assembly-Language Format
MOV.B Rs, Rd I: Previous value remains unchanged.

H: Previous value remains unchanged.
Operand Size N: Setto 1 when the data value is negative;
Byte otherwise cleared to 0.

Z: Setto 1 when the data value is zero;
otherwise cleared to 0.

Cleared to 0.

C: Previous value remains unchanged.

<

Description
This instruction moves one byte of data from a source register to a destination register and sef
condition code flags according to the data value.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands Sth'thf
1stbyte | 2nd byte | 3rd byte | 4th byte
Register direct MOV.B |Rs, Rd 01 C|rs i 2

78

2.2.32 (2) MOV (move data) (word) MOV
Operation Condition Code

Rs - Rd I H N Z V C
— ===t |t [O0] —

Assembly-Language Format
MOV.WRs, Rd I: Previous value remains unchanged.

H: Previous value remains unchanged.

Operand Size N: Set to 1 when the data value is negative;
Word otherwise cleared to 0.

Z: Set to 1 when the data value is zero;
otherwise cleared to 0.
Cleared to 0.

C: Previous value remains unchanged.

<

Description
This instruction moves one word of data from a source register to a destination register and
sets condition code flags according to the data value.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode 9 Mnem. | Operands ,s\ltgigsf
1stbyte | 2nd byte 3rd byte | 4th byte
1 I [
Register direct |MOV.W | Rs, Rd 0 (D |0irs 0ird 2

79

2.2.32 (3) MOV (move data) (byte) MOV

Operation Condition Code

(EAs) -~ Rd | H N Z vV C
— | ===t]t |O|—

Assembly-Language Format
MOV.B <EAs>, Rd

Operand Size

I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Set to 1 when the data value is negative;

Byte otherwise cleared to 0.
Z. Setto 1 when the data value is zero;
otherwise cleared to 0.
V. Cleared to 0.
C: Previous value remains unchanged.
Description

This instruction moves one byte of data from a source operand to a destination register and se
condition code flags according to the data value.

The MOV.B @R7+, Rd instruction should never be used, because it leaves an odd value in the
stack pointer. See section 3.2.3 for details.

Instruction Formats and Number of Execution States

. Instruction code
Addressin
mode g Mnem. Operands sthi:sf
1st byte | 2nd byte | 3rd byte | 4th byte
Immediate MOV.B |#xx:8, Rd F i rd IMM 2
Register indirect | MOV.B | @RS, Rd 6 '8 [0irsl d 4
Register indirect | | |
with displacement |MOV.B |@(d:16,Rs),Rd| 6 | E |Ors: rd disp. 6
Register indirect | o
with post-increment| MOV.B | @Rs+, Rd 6 ' C O;rsi rd 6
Absolute address |MOV.B | @aa:8, Rd 2 i rd abs 4
| [

Absolute address | MOV.B | @aa:16, Rd 6 | A 0O ' rd abs. 6

80

2.2.32 (4) MOV (move data) (word) MOV
Operation Condition Code
(EAs) - Rd | H N Zz V C

Assembly-Language Format
MOV.W<EAs>, Rd

Operand Size
Word

0O <

—|—|=[—|s]]O0]—

Previous value remains unchanged.
Previous value remains unchanged.

Set to 1 when the data value is negative;
otherwise cleared to 0.

Set to 1 when the data value is zero;
otherwise cleared to 0.

Cleared to 0.

Previous value remains unchanged.

Description

This instruction moves one word of data from a source operand to a destination register and
sets condition code flags according to the data value.

If the source operand is in memory, it must be located at an even address.

MOV.W @R7+, Rd is identical in machine language to POP.W Rd.

Note that the LSIs in the H8/300L Series contain on-chip peripheral modules for which access
in word size is not possible. Details are given in the applicable hardware manual.

Instruction Formats and Number of Execution States

- Instruction code
Addressin
mode g Mnem. Operands s’?ltg'tgsf
1stbyte | 2nd byte | 3rd byte | 4th byte

Immediate MOV.W | #xx:16, Rd 7 190 0rd IMM 4
Register indirect | MOV.W | @RS, Rd 6 | 9 0irs0rd 4
Register indirect | i R
with displacement |MOV.W | @(d:16,Rs),Rd | 6 | F Olrs} 'rd disp. 6
Register indirect i | R
with post-increment| MOV.W | @Rs+, Rd 6 | D |0rs0rd 6
Absolute address | MOV.W | @aa:16, Rd 6 i B|O iOird abs. 6

81

2.2.32 (5) MOV (move data) (byte)
Operation Condition Code

— | 3 ! 0

Assembly-Language Format

MOV.B Rs, <EAd> I:
H: Previous value remains unchanged.

N: Set to 1 when the data value is negative;

Previous value remains unchanged.

Operand Size

Byte otherwise cleared to 0.
Z:. Setto 1 when the data value is zero;
otherwise cleared to 0.
V. Cleared to 0.
C: Previous value remains unchanged.
Description

This instruction moves one byte of data from a source register to memory and sets condition
code flags according to the data value.
The MOV.B Rs, @—R7 instruction should never be used, because it leaves an odd value in the

stack pointer. See section 3.2.3 for details.
The instruction MOV.B RnH, @—Rn or MOV.B RnL, @—Rn decrements register Rn, then
moves the upper or lower byte of the decremented result to memory.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands sthief);
1stbyte | 2nd byte | 3rd byte | 4th byte
Register indirect |MOV.B |Rs, @Rd 6 |8 1ird rs 4
Register indirect Rs, i i i
with displacement |MOV.B | @(d:16,Rd) 6 | E [Lird rs disp. 6
Register indirect | L
with pre-decrement | MOV.B |Rs, @-Rd 6 | C |1ird rs 6
Absolute address | MOV.B |Rs,@aa:8 3 i rs abs 4
Absolute address |MOV.B |Rs,@aa:16 6 i A 8 |rs abs. 6
L L

82

2.2.32 (6) MOV (move data) (word) MOV

Operation Condition Code

Rs ~ (EAd) | H N Z VvV C
— | ===t |t |O|—

Assembly-Language Format
MOV.WRs, <EAd>

Operand Size
Word

<

Previous value remains unchanged.

otherwise cleared to 0.
Set to 1 when the data value is zero;
otherwise cleared to 0.
Cleared to O.

Previous value remains unchanged.
Set to 1 when the data value is negative;

Previous value remains unchanged.

Description

This instruction moves one word of data from a general register to memory and sets condition
code flags according to the data value.

The destination address in memory must be even.
MOV.W Rs, @—R?7 is identical in machine language to PUSH.W Rs.

The instruction MOV.W Rn, @—Rn decrements register Rn by 2, then moves the decremented

result to memory.

Note that the LSIs in the H8/300L Series contain on-chip peripheral modules for which access

in word size is not possible. Details are given in the applicable hardware manual.

Instruction Formats and Number of Execution States

Instruction code

Addressin
mode g Mnem. Operands No. of
states
1stbyte | 2nd byte | 3rd byte 4th byte

Register indirect MOV.W | Rs, @Rd 6 i 9 13 rd 303 rs 4
Register indirect Rs, i i i i
with displacement | MOV.W | @(d:16, Rd) 6 | F |LirdOjrs disp. 6
Register indirect i | i i
with pre-decrement | MOV.W | Rs, @-Rd 6 ' D 13 rdi0irs 6
Absolute address |MOV.W | Rs, @aa:16 6 i B | 8 303 rs abs. 6

83

2.2.33 MULXU (multiply extend as unsigned) MULXU

Operation Condition Code
Rdx Rs - Rd [H N Z V C

Assembly-Language Format

MULXURSs, Rd Previous value remains unchanged.

I:

H: Previous value remains unchanged.

N: Previous value remains unchanged.
Operand Size Z: Previous value remains unchanged.
Byte V. Previous value remains unchanged.

C: Previous value remains unchanged.
Description

This instruction performs 8-bi 8-bit — 16-bit multiplication. It multiplies a destination

register by a source register and places the result in the destination register. The source
register is an 8-bit register. The destination register is a 16-bit register containing the data to
be multiplied in the lower byte. (The upper byte is ignored). The result is placed in both bytes
of the destination register. The operation is shown schematically below.

Rd Rs Rd
| Don‘t-carel Multiplicandl X | Multiplier | - | Product |
8 bits 8 bits 16 bits

The multiplier can occupy either the upper or lower byte of the source register.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of

mode Mnem. Operands states
1st byte | 2nd byte 3rd byte 4th byte

Register direct | MULXU | Rs, Rd 510 |rs 0! rd 14

84

2.2.34 NEG (negate) NEG
Operation Condition Code

— |[— [T [—|? ! ! !

Assembly-Language Format

NEG Rd I: Previous value remains unchanged.

H: Set to 1 when there is a borrow from bit
Operand Size 3; otherwise cleared to 0.
Byte N: Set to 1 when the result is negative;

otherwise cleared to 0.

Z:. Setto 1 when the result is zero;
otherwise cleared to 0.

V. Setto 1 when an overflow occurs (the
previous contents of the destination
register was H'80); otherwise cleared to
0.

C: Setto 1 when there is a borrow from bit
7 (the previous contents of the
destination register was not H'00);
otherwise cleared to 0.

Description

This instruction replaces the contents of an 8-bit general register with its two's complement
(subtracts the register contents from H'00).

If the original contents of the destination register was H'80, the register value remains H'80 an
the overflow flag is set.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of

mode Mnem. Operands states

1st byte | 2nd byte 3rd byte 4th byte

Register direct NEG Rd 1 17 |8 1 2

85

2.2.35 NOP (no operation) NOP

Operation Condition Code

PC+2 - PC | H N z V C

Assembly-Language Format

NOP Previous value remains unchanged.

Previous value remains unchanged.

Operand Size Previous value remains unchanged.

Previous value remains unchanged.
Previous value remains unchanged.

OsNZI ™

Previous value remains unchanged.

Description

This instruction only increments the program counter, causing the next instruction to be
executed. The internal state of the CPU does not change.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. Operands states
1stbyte | 2nd byte | 3rd byte 4th byte
NOP 0 i 0 0 i 0 2

86

2.2.36 NOT (NOT = logical complement) NOT

Operation Condition Code
" Rd-Rd | H N Z V C
—|—]—[—]t]t |O0]—
Assembly-Language Format
NOT Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Setto 1 when the result is zero;
otherwise cleared to 0.
V: Cleared to O.
C: Previous value remains unchanged.
Description

This instruction replaces the contents of an 8-bit general register with its one’s complement
(subtracts the register contents from H'FF).

Instruction Formats and Number of Execution States

Addressing Instruction code No. of

mode Mnem. Operands states
1st byte 2nd byte | 3rd byte 4th byte

Register direct NOT Rd 1 17 0! rd 2

87

2.2.37 OR (inclusive OR logical) OR
Operation Condition Code
RdO(EAs) - Rd | H N Z V ¢

Assembly-Language Format
OR <EAs>, Rd

Operand Size

— ===t []O|—

I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Setto 1 when the result is negative;

Byte otherwise cleared to 0.
Z:. Setto 1 when the result is zero;
otherwise cleared to 0.
V: Cleared to O.
C: Previous value remains unchanged.
Description

This instruction ORs the source operand with the contents of an 8-bit general register and
places the result in the general register.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte
|
Immediate OR #xx:8,Rd | C | rd IMM 2
[|
Register direct | OR Rs, Rd L4 rs | rd 2

88

2.2.38 ORC (inclusive OR control register) ORC

Operation Condition Code
CCRO#IMM - CCR

| H N Z V C
O O R R A

Assembly-Language Format

ORC #xx:8, CCR ORed with bit 7 of the immediate data.

I

H: ORed with bit 5 of the immediate data.
Operand Size N: ORed with bit 3 of the immediate data.
Byte Z: ORed with bit 2 of the immediate data.

V. ORed with bit 1 of the immediate data.

C: ORed with bit O of the immediate data.
Description

This instruction ORs the condition code register (CCR) with immediate data and places the
result in the condition code register. Bits 6 and 4 are ORed as well as the flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts are
deferred until after the next instruction.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. Operands states

1st byte 2nd byte 3rd byte 4th byte

Immediate ORC #xx:8, CCR| 0 | 4 IMM 2

89

2.2.39 POP (pop data) POP

Operation Condition Code
@SP+- Rn | H N Z V C
—|—]—=[—=]t]t |O0]—
Assembly-Language Format
POP Rn
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Word N: Setto 1 when the data value is negative;
otherwise cleared to 0.
Z: Setto 1 when the data value is zero;
otherwise cleared to 0.
V. Cleared to 0.
C: Previous value remains unchanged.
Description

This instruction pops data from the stack to a 16-bit general register and sets condition code
flags according to the data value.
POP.W Rn is identical in machine language to MOV.W @SP+, Rn.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands [s\ltg'tg
1st byte | 2nd byte | 3rd byte | 4th byte
— POP Rd 6 D | 7 0m 6

90

2.2.40 PUSH (push data) PUSH

Operation Condition Code
Rn - @-SP | H N Z V C
—|—]—[—]t]t |O0]—
Assembly-Language Format
PUSH Rn
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Word N: Setto 1 when the data value is negative;
otherwise cleared to 0.
Z: Setto 1 when the data value is zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.
Description

This instruction pushes data from a 16-bit general register onto the stack and sets condition
code flags according to the data value.
PUSH.W Rn is identical in machine language to MOV.W Rn, @-SP.

Instruction Formats and Number of Execution States

. Instruction code
Addressin
mode g Mnem. | Operands [c\lx[gié)s]c
1st byte | 2nd byte 3rd byte | 4th byte
— PUSH Rs 6 D| F 0m 6

91

2.2.41 ROTL (rotate left) ROTL

Operation Condition Code
Rd (rotated left)» Rd

| H N Z V C
— | —]|—=[—=]t]t]|]O]

Assembly-Language Format

ROTL Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Setto 1 when the result is negative;
otherwise cleared to O.
Z: Setto 1 when the result is zero;
otherwise cleared to O.
V: Cleared to 0.
C: Receives the previous value in bit 7.
Description

This instruction rotates an 8-bit general register one bit to the left. The most significant bit is
rotated to the least significant bit, and also copied to the carry flag.
The operation is shown schematically below.

MSB LSB
I:IEI—— [——
C Bit 7 Bit 0
Instruction Formats and Number of Execution States
. Instruction code
Addressin
mode g Mnem. | Operands sthief);
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | ROTL Rd 1 2|8 | 2

92

2.2.42 ROTR (rotate right) ROTR

Operation Condition Code
Rd (rotated right)» Rd

I H N Z V C
— | ===t [t [O] ¢
Assembly-Language Format
ROTRRd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Setto 1 when the result is zero;
otherwise cleared to 0.
V. Cleared to 0.
C: Receives the previous value in bit 0.
Description

This instruction rotates an 8-bit general register one bit to the right. The least significant bit is
rotated to the most significant bit, and also copied to the carry flag.
The operation is shown schematically below.

MSB LSB
L |

Bit 7 Bit0 C

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands sN,tgigs]c
1st byte 2nd byte | 3rd byte | 4th byte
Register direct | ROTR Rd 1 i 3 8 ! 2

93

2.2.43 ROTXL (rotate with extend carry left) ROTXL
Operation Condition Code
Rd (rotated with carry left)}» Rd | H N 7 V C

—|—[—]—]t []0O]¢

Assembly-Language Format

ROTXL Rd
I: Previous value remains unchanged.

H: Previous value remains unchanged.
N: Set to 1 when the result is negative;

Operand Size

Byte
otherwise cleared to 0.
Z. Setto 1 when the result is zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Receives the previous value in bit 7.
Description

This instruction rotates an 8-bit general register one bit to the left through the carry flag. The
carry flag is rotated into the least significant bit of the register. The most significant bit rotates
into the carry flag.

The operation is shown schematically below.

-

C Bit 7 Bit O

MSB LSB

Instruction Formats and Number of Execution States

Addressing Instruction code No. of

mode Mnem. | Operands states

1st byte 2nd byte | 3rd byte | 4th byte

Register direct | ROTXL Rd 1120 | 2

94

2.2.44 ROTXR (rotate with extend carry right) ROTXR

Operation Condition Code
Rd (rotated with carry right). Rd

I H N Z V C
— | —|—|—[t [t [O]¢
Assembly-Language Format
ROTXRRd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Setto 1 when the result is zero;
otherwise cleared to 0.
V. Cleared to 0.
C: Receives the previous value in bit 0.
Description

This instruction rotates an 8-bit general register one bit to the right through the carry flag. The
least significant bit is rotated into the carry flag. The carry flag rotates into the most
significant bit.

The operation is shown schematically below.

‘ MSB LSB
—EII:I—B

Bit 7 Bit0O C

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode 9 Mnem. | Operands sth'teos]:
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | ROTXR Rd 1 i 3/ 0 ' 2

95

2.2.45 RTE (return from exception) RTE
Operation Condition Code

@SP+- CCR | H N Z V C
@SP+- PC

Assembly-Language Format
RTE

Operand Size

I ! J T [I

Restored from stack.
Restored from stack.
Restored from stack.
Restored from stack.
Restored from stack.
Restored from stack.

OsNzZzI ™

Description

This instruction returns from an exception-handling routine. It pops the condition code
register (CCR) and program counter (PC) from the stack. Program execution continues from

the address restored to the program counter.

The CCR and PC contents at the time of execution of this instruction are lost.
The CCR is one byte in size, but it is popped from the stack as a word (in which the lower 8
bits are ignored). This instruction therefore adds 4 to the value of the stack pointer (R7).

Instruction Formats and Number of Execution States

Instruction code

Addressin
mode 9 Mnem. | Operands Sth'tgsf
1st byte | 2nd byte 3rd byte | 4th byte
— RTE 516 7 |0 10

96

2.2.46 RTS (return from subroutine) RTS
Operation Condition Code
@SP+- PC | H N Z V C

Assembly-Language Format
RTS

Operand Size

O<NZI=

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

Description

This instruction returns from a subroutine. It pops the program counter (PC) from the stack.

Program execution continues from the address restored to the program counter.
The PC contents at the time of execution of this instruction are lost.

Instruction Formats and Number of Execution States

. Instruction code
Addressin
mode g Mnem. | Operands ’s\ltgigsf
1st byte | 2nd byte 3rd byte | 4th byte
] T
— RTS 5 4 |7 10 8

97

2.2.47 SHAL (shift arithmetic left) SHAL
Operation Condition Code
Rd (shifted arithmetic left » Rd | H N Z V C

Assembly-Language Format
SHAL Rd

Operand Size
Byte

— === T]T |

Previous value remains unchanged.

: Previous value remains unchanged.
: Set to 1 when the result is negative;

otherwise cleared to 0.

Set to 1 when the result is zero;
otherwise cleared to 0.

Set to 1 when an overflow occurs;
otherwise cleared to 0.

Receives the previous value in bit 7.

Description

This instruction shifts an 8-bit general register one bit to the left. The most significant bit
shifts into the carry flag, and the least significant bit is cleared to 0.

The operation is shown schematically below.
=
MSB LSB
= -
C Bit7 Bit 0

The SHAL instruction is identical to the SHLL instruction except for its effect on the overflow

(V) flag.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode 9 Mnem. | Operands Sth'thf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SHAL Rd 1 i 0/ 8 ' 2

98

2.2.48 SHAR (shift arithmetic right) SHAR

Operation Condition Code
Rd (shifted arithmetic right }» Rd

I H N Z V C
—|— ==t]t |0
Assembly-Language Format
SHAR Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Setto 1 when the result is zero;
otherwise cleared to 0.
V: Cleared to O.
C: Receives the previous value in bit O.
Description

This instruction shifts an 8-bit general register one bit to the right. The most significant bit
remains unchanged. The sign of the result does not change. The least significant bit shifts int
the carry flag.

The operation is shown schematically below.

MSB LSB
r .
— |
Bit 7 Bit0O C

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands sthiefJ;
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SHAR Rd 1118 | o 2

99

2.2.49 SHLL (shift logical left) SHLL

Operation Condition Code
Rd (shifted logical left }» Rd

I H N Z V C
—|—[—|—]t |t O]
Assembly-Language Format
SHLL Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Setto 1 when the result is negative;
otherwise cleared to O.
Z: Setto 1 when the result is zero;
otherwise cleared to O.
V: Cleared to 0.
C: Receives the previous value in bit O.
Description

This instruction shifts an 8-bit general register one bit to the left. The least significant bit is
cleared to 0. The most significant bit shifts into the carry flag.
The operation is shown schematically below.

=

MSB LSB
[-
C Bit 7 Bit O

The SHLL instruction is identical to the SHAL instruction except for its effect on the overflow
(V) flag.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands ls\ltgi:s]c
1st byte 2nd byte | 3rd byte | 4th byte
Register direct | SHLL Rd 1 i 0/ 0 ' 2

100

2.2.50 SHLR (shift logical right) SHLR
Operation Condition Code
Rd (shifted logical right }» Rd

I H N Z V C
—|—]—[—]t]t O]
Assembly-Language Format
SHLR Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Setto 1 when the result is negative;
otherwise cleared to 0.
Z: Setto 1 when the result is zero;
otherwise cleared to 0.
V: Cleared to O.
C: Receives the previous value in bit O.
Description

This instruction shifts an 8-bit general register one bit to the right. The most significant bit is
cleared to 0. The least significant bit shifts into the carry flag.
The operation is shown schematically below.

£]
MSB LSB
0 —J —EII:I
Bit 7 Bit0 C

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands Is\l'[gie();
1st byte | 2nd byte 3rd byte | 4th byte
] T
Register direct | SHLR Rd 1 110 ! rd 2

101

2.2.51 SLEEP (sleep) SLEEP
Operation Condition Code
Program execution state power-

| H N Z V C

down mode

Assembly-Language Format

SLEEP Previous value remains unchanged.

Previous value remains unchanged.

Operand Size Previous value remains unchanged.

Previous value remains unchanged.

Previous value remains unchanged.

Os Nz I~

Previous value remains unchanged.

Description

When the SLEEP instruction is executed, the CPU enters a power-down mode. Its internal
state remains unchanged, but the CPU stops executing instructions and waits for an exceptior
handling request (interrupt or reset). When it receives an exception-handling request, the CPl
exits the power-down mode and begins the exception-handling sequence.

If the interrupt mask (1) bit is set to 1, the power-down mode can be released only by a
nonmaskable interrupt (NMI) or reset.

For information about the power-down modes, see the applicable hardware manual.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands Sth'tg
1stbyte | 2nd byte 3rd byte | 4th byte
— SLEEP 01 1/8 |0 2

102

2.2.52 STC (store from control register) STC

Operation Condition Code
CCR - Rd

I H N Z V C

Assembly-Language Format

STC CCR, Rd
Previous value remains unchanged.

I:
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V. Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction copies the condition code register (CCR) to a specified general register. Bits €
and 4 are copied as well as the flag bits.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands ’s\ltgigsf
1st byte | 2nd byte 3rd byte | 4th byte
0 T
Register direct | STC CCR, Rd 012 0 '« 2

103

2.2.53 (1) SUB (subtract binary) (byte) SUB

Operation Condition Code
Rd — Rs- Rd

| H N Z V C
— |— T | =]t T][

Assembly-Language Format

SUB.B Rs, Rd
I: Previous value remains unchanged.

Operand Size H: Setto 1 when there is a borrow from
Byte bit 3; otherwise cleared to 0.
N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Setto 1 when the result is zero;
otherwise cleared to 0.
V. Setto 1 when an overflow occurs;
otherwise cleared to 0.
C: Setto 1 when there is a borrow from
bit 7; otherwise cleared to O.

Description

This instruction subtracts an 8-bit source register from an 8-bit destination register and places
the result in the destination register.

Only register direct addressing is supported. To subtract immediate data it is necessary to use
the SUBX.B instruction, first setting the zero flag to 1 and clearing the carry flag to 0.

The following codings can also be used to subtract nonzero immediate data.

(1) ORC #H'05, CCR (2) ADD #(0-Imm), Rd
SUBX #(Imm - 1), Rd XORC #H'01, CCR

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands Sth'tgg
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SUB.B Rs, Rd 1 i 8 | rs | rd 2

104

2.2.53 (2) SUB (subtract binary) (word) SUB
Operation Condition Code
Rd-Rs - Rd

I H N Z V C

Assembly-Language Format
SUB.W Rs, Rd

Operand Size
Word

— | ¢

I: Previous value remains unchanged.

. Set to 1 when there is a borrow from
bit 11; otherwise cleared to O.

. Set to 1 when the result is negative;
otherwise cleared to 0.
Set to 1 when the result is zero;
otherwise cleared to 0.
Set to 1 when an overflow occurs;
otherwise cleared to 0.

. Set to 1 when there is a borrow from
bit 15; otherwise cleared to 0.

Description

This instruction subtracts a 16-bit source register from a 16-bit destination register and places

the result in the destination register.

Instruction Formats and Number of Execution States

. Instruction code
Addressin
mode J Mnem. | Operands Sth'tg
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SUBW | Rs, Rd 11 9 |0irs 0rd 2

105

2.2.54 SUBS (subtract with sign extension) SUBS

Operation Condition Code
Rd-2- Rd

Assembly-Language Format

SUBS #1, Rd I: Previous value remains unchanged.
SUBS #2, Rd H: Previous value remains unchanged.
N: Previous value remains unchanged.
Operand Size Z: Previous value remains unchanged.
Word V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction subtracts the immediate value 1 or 2 from word data in a general register.
Unlike the SUB instruction, it does not affect the condition code flags.
The SUBS instruction does not permit byte operands.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands ,s\ltg'té)sf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SUBS | #1, Rd 11 B 0 0r 2
Register direct SUBS #2, Rd 1!/ B| 8 .0rd 2

106

2.2.55 SUBX (subtract with extend carry)

SUBX

Operation
Rd - (EAs) - C- Rd

Assembly-Language Format
SUBX <EAs>, Rd

Operand Size
Byte

Condition Code

| H N Z

— | I

Previous value remains unchanged.

Set to 1 if there is a borrow from bit 3;
otherwise cleared to 0.

Set to 1 when the result is negative;
otherwise cleared to 0.

Previous value remains unchanged when
the result is zero; otherwise cleared to 0.
Set to 1 when an overflow occurs;
otherwise cleared to 0.

Description

This instruction subtracts the source operand and carry flag from the contents of an 8-bit
general register and places the result in the general register.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands sN,tgigs]c
1st byte | 2nd byte 3rd byte | 4th byte
Immediate SUBX | #xx8,Rd | B | rd IMM 2
| I
Register direct SUBX Rs, Rd 1 ' E rs | rd 2
| |

107

2.2.56 XOR (exclusive OR logical)

Operation
RdUO (EAs) - Rd

Condition Code

Assembly-Language Format
XOR <EAs>, Rd

Operand Size
Byte

0 <

I H N Z V C

Previous value remains unchanged.
Previous value remains unchanged.
Set to 1 when the result is negative;
otherwise cleared to 0.

Set to 1 when the result is zero;
otherwise cleared to 0.

Cleared to O.

Previous value remains unchanged.

Description

This instruction exclusive-ORs the source operand with the contents of an 8-bit general

register and places the result in the general register.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands sth't:sf
1st byte | 2nd byte 3rd byte | 4th byte
Immediate XOR #xx:8,Rd | D | rd IMM 2
Register direct | XOR Rs, Rd 1 15| rs i rd 2

108

2.2.57 XORC (exclusive OR control register) XORC

Operation Condition Code
CCRO#IMM - CCR

I H N Z V C
R RO IR I I R R

Assembly-Language Format

XORC#xx:8, CCR
I: Exclusive-ORed with bit 7 of the

Operand Size immediate data.
Byte H: Exclusive-ORed with bit 5 of the
immediate data.
N: Exclusive-ORed with bit 3 of the
immediate data.
Z:. Exclusive-ORed with bit 2 of the
immediate data.
V. Exclusive-ORed with bit 1 of the
immediate data.
C. Exclusive-ORed with bit O of the
immediate data.

Description

This instruction exclusive-ORs the condition code register (CCR) with immediate data and
places the result in the condition code register. Bits 6 and 4 are exclusive-ORed as well as the
flag bits.

No interrupt requests are accepted immediately after this instruction. All interrupts, including
the nonmaskable interrupt (NMI), are deferred until after the next instruction.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands ytg'té)sf
1st byte | 2nd byte 3rd byte | 4th byte
Immediate XORC | #xx:8,CCR| 0 | 5 IMM 2

109

2.3 Operation Code Map

Table 2-1 shows the operation code map for instructions of the H8/300L CPU. Only the first
byte (bits 15 to 8 of the first word) of the instruction code is indicated here.

Indicates that the most significant bit of the 2nd byte
y (bit 7 of 1st word of instruction code) is O.

- Indicates that the most significant bit of the 2nd byte
(bit 7 of 1st word of instruction code) is 1.

110

'S|re1ap oy} ‘suononiIsu| ‘Z'z UoNaas Ul SUORONAISUI [enpiAIpul Jo suonduasap ayl 893S "uonaniisul AOIN aYl 01 abenBue| suiyoew ul JuajeAinba are suononisul 4Od pue HSNd 8yl 910N

111

NOW |
anvy 3
JOX a
4o o)
Xxans g
dND v
xaav 6
aav 8
amg dNvig_|doxig_~1doIg
suononysul uopendiuew g AOWd33 NOW L
- m._m_ ANvE | “¥OXd8| ~ HO08| 51g | wiog | lONg | 13sg
LN\OW 9
1S9
use dine ENRY) usd S1yd NXAIQ | NXINW S
319 199 179 399 Ing 1dg SAd oAg O3g ang sod 204 s1d IHg NYg vig 14
€
NOW
r4
953N dlod _~T110d dvHS AVHS
sva Xans diNo sans o3a ans anvy 4OX 4o T
10N X10d| ~IXL0d| " dTHS| ~TIHS
vva xaav NOW saav ONI aav oat JaNV | DJdOX 240 oai 1S EEER dON 0
IH
4 3 a o) g v 6 8 L 9 S 14 € r4 T 0 o

de |\ 8poD uolreedO T-Z3lqeL

2.4 List of Instructions

Table 2-2. List of Instructions (1)

Addressing Mode and
Instruction Length (Bytes)

*
£& .0 :
04 I
© AESIR=IN N
o O | = @ °© L.
Y —| £/ ®| o §| 2| Condition Code |
. . X . 23T 8309 e :
Mnemonic Operation X g R &R & a EI H c | 8
MOV.B #xx:8, Rd #xx:8 — Rd8 2 — 0|l—| 2
MOV.B Rs, Rd Rs8 - RdS8 2 — 0|l—| 2
MOV.B @Rs, Rd @Rs16 - Rd8 2 — 0|—| 4
MOV.B @(d:16, Rs), Rd @(d:16, Rs16) — Rd8 4 — 0|—| 6
MOV.B @Rs+, Rd @Rs16 - Rd8 2 — 0|—| 6
Rs16+1 - Rs16
MOV.B @aa:8, Rd B| @aa:8 —» Rd8 — 0|—| 4
MOV.B @aa:16, Rd B| @aa:16 - Rd8 4 — 0|—| 6
MOV.B Rs, @Rd B| Rs8 -~ @Rd16 2 — 0|l—| 4
MOV.B Rs, @(d:16, Rd) | B| Rs8 — @(d:16, Rd16) 4 — 0|—| 6
MOV.B Rs, @-Rd B | Rd16-1 —» Rd16 2 — 0|—| 6
Rs8 - @Rd16
MOV.B Rs, @aa:8 B| Rs8 - @aa:8 — 0|—| 4
MOV.B Rs, @aa:16 B| Rs8 - @aa:16 4 — 0|—| 6
MOV.W #xx:16, Rd W| #xx:16 - Rd 4 — 0l—| 4
MOV.W Rs, Rd W| Rs16 - Rd16 2 — 0|—| 2
MOV.W @Rs, Rd W| @Rs16 - Rd16 2 — 0|l—| 4
MOV.W @(d:16, Rs), Rd |W| @(d:16, Rs16) — Rd16 4 — 0|—|6
MOV.W @Rs+, Rd W| @Rs16 - Rd16 2 — 0|—| 6
Rs16+2 - Rs16
MOV.W @aa:16, Rd W| @aa:16 - Rd16 4 — 0|—| 6
MOV.W Rs, @Rd W/| Rs1l6 - @Rd16 2 — 0|l—| 4
MOV.W Rs, @(d:16, Rd) |W/| Rsl16 - @(d:16, Rd16) 4 — 0|—| 6
MOV.W Rs, @—-Rd W/| Rd16-2 - Rd16 2 — 0|—| 6
Rs16 - @Rd16
MOV.W Rs, @aa:16 W| Rsl6 - @aa:16 4 — 0|—| 6
POP Rd W| @SP - Rd16 2 — —
SP+2 - SP
PUSH Rs SP-2 - SP 2 — —
Rs16 - @SP

112

Table 2-2. List of Instructions (2)

Addressing Mode and
Instruction Length (Bytes)

*
SERE ¢
S © @ 9| ° 2
o > c| D& 2 g gl 2 condition Code 5
Mnemonic /=| Operation }e&addm g 3 N Z =
ADD.B #xx:8, Rd B | Rd8+#xx:8 —» Rd8 2] 2
ADD.B Rs, Rd B | Rd8+Rs8 -~ Rd8 2 Tt 2
ADD.W Rs, Rd W| Rd16+Rs16 — Rd16 2 Tt 2
ADDX.B #xx:8, Rd B | Rd8+#xx:8+C - Rd8 2 ¢ 0 2
ADDX.B Rs, Rd B | Rd8+Rs8+C — Rd8 2 1|0 2
ADDS.W #1, Rd W| Rd16+1 - Rd16 2 —|— 2
ADDS.W #2, Rd W/| Rd16+2 - Rd16 2 —|— 2
INC.B Rd B | Rd8+1 —» Rd8 2 Tt 2
DAA.B Rd B | Rd8 decimal-adjust -~ Rd8 2 Tt 2
SUB.B Rs, Rd B | Rd8-Rs8 - Rd8 2 Tt 2
SUB.W Rs, Rd W| Rd16-Rs16 — Rd16 2 T 2
SUBX.B #xx:8, Rd B | Rd8—#xx:8-C - Rd8 2 t1 0 2
SUBX.B Rs, Rd B | Rd8—-Rs8-C - Rd8 2 v 0 2
SUBS.W #1, Rd W| Rd16-1 - Rd16 2 —|— 2
SUBS.W #2, Rd W| Rd16-2 - Rd16 2 —|— 2
DEC.B Rd B | Rd8-1 - Rd8 2 Tt 2
DAS.B Rd B | Rd8 decimal-adjust -~ Rd8 2 1)t 2
NEG.B Rd B| 0-Rd - Rd 2 Tt 2
CMP.B #xx:8, Rd B | Rd8—#xx:8 2]t 2
CMP.B Rs, Rd B | Rd8-Rs8 2 Tt 2
CMP.W Rs, Rd W | Rd16-Rs16 2 Tt 2
MULXU.B Rs, Rd B | Rd8xRs8 — Rd16 2 —|— 14
DIVXU.B Rs, Rd B | Rd16+Rs8 — Rd16 2 oo 14

(RdH: remainder,

RdL: quotient)

AND.B #xx:8, Rd B | Rd8#xx:8 — Rd8 2 t]t]0 2
AND.B Rs, Rd B | Rd8[Rs8 - Rd8 2] 2
OR.B #xx:8, Rd B | Rd8[H#xx:8 —» Rd8 2 1t 0 2
OR.B Rs, Rd B | Rd8Rs8 - Rd8 2] 2
XOR.B #xx:8, Rd B | Rd80#xx:8 — Rd8 2 t1t]0 2
XOR.B Rs, Rd B | RdBURs8 - Rd8 2] 2
NOT.B Rd B| Rd - Rd 2 t/ 10 2

113

Table 2-2. List of Instructions (3)

Addressing Mode and
Instruction Length (Bytes)

*

+ 0

= g) Q

014 ©

‘c._o| © @ g o - o

& < 2| © g E 2 Condition Code |5

] = cl 5l X 3o = 4

: N . X 22132808 2 g
Mnemonic 7~| Operation XIv|eae e Ef HN Z V C | =
SHAL.B Rd B 2

2 ——] T T2
L[o

by bo

SHAR.B Rd B 2 —|—| | t]|0]¢
[T
_—
b

by)

SHLL.B Rd B 2 —|—|t]t|o0]
L[] o

by bo

SHLR.BRd B

o [[[1]] ¢

b b

7 0

ROTXL.B Rd B 2 —|—|t|1]0]
cxiliiEEN
b, bo

@)

ROTXR.B Rd B 2 —|—| ¢t t]0]
e
(0]

by b

ROTL.B Rd B IIIIIII 2 110
b; by

ROTR.B Rd B 2 —|—[] t]O]?

T e

b7 bo
BSET #xx:3, Rd B| (#xx:3 0f Rd8) ~ 1 2 ——|—|——]|—] 2
BSET #xx:3, @Rd B | (#xx:3 of @Rd16) ~ 1 4 —|—|—|—|—|— 8
BSET #xx:3, @aa:8 B | (#xx:3 of @aa:8) ~ 1 4 — | —|—|—]—|—| 8
BSET Rn, Rd B| (Rn8 of Rd8) ~ 1 2 — == === 2
BSET Rn, @Rd B | (Rn8 of @Rd16) ~ 1 4 — | —|—|—|—|—| 8
BSET Rn, @aa:8 B | (Rn8 of @aa:8) ~ 1 4 — | —|—|—]—|—| 8

114

Table 2-2. List of Instructions (4)

Addressing Mode and

Instruction Length (Bytes)

*
AR :
S © @ it -)
o @ c & 2 g gl 2 condition Code 5
Mnemonic 7=| Operation 356 aadda g ElhNzvVeE|S
BCLR #xx:3, Rd B | (#xx:3 of Rd8) —~ 0 2 ——|—|—|—]—] 2
BCLR #xx:3, @Rd B| (#xx:3 of @Rd16) ~ O 4 —|—|—|—|—|—1 8
BCLR #xx:3, @aa:8 B | (#xx:3 of @aa:8) ~ 0 4 | —|—|—]—|—| 8
BCLR Rn, Rd B | (Rn8 of Rd8) — 0 2 —|—|=|=|=]—| 2
BCLR Rn, @Rd B | (Rn8 of @Rd16) ~ 0O 4 — | —|—|—|—|—| 8
BCLR Rn, @aa:8 B | (Rn8 of @aa:8) - 0 4 —|—|—|—|—|—| 8
BNOT #xx:3, Rd B| (#xx:3 of Rd8) ~ 2 —|—|—|——]|—] 2
(#xx:3 of Rd8)
BNOT #xx:3, @Rd B | (#xx:3 of @Rd16) ~ 4 —|—|—|—|—|—1 8
(#xx:3 of @Rd16)
BNOT #xx:3, @aa:8 B | (#xx:3 of @aa:8) 4 —|—|—|—|—|—| 8
(#xx:3 of @aa:8)
BNOT Rn, Rd B | (Rn8 of Rd8) 2 — | —|—|—|—|— 2
(Rn8 of Rd8)
BNOT Rn, @Rd B | (Rn8 of @Rd16) « 4 | —|—=—=|—8
(Rn8 of @Rd16)
BNOT Rn, @aa:8 B | (Rn8 of @aa:8) 4 —|—|—|—|—|—| 8
(Rn8 of @aa:8)
BTST #xx:3, Rd B| (#xx:3 of Rd8) - Z 2 =]t == 2
BTST #xx:3, @Rd B| (#xx:3 of @Rd16) - Z 4 — ==t —|—6
BTST #xx:3, @aa:8 B| (#xx:3 of @aa:8) — Z 4 —|—|—| t|—|—| 6
BTST Rn, Rd B| (Rn8 of Rd8) - Z 2 =]t |=]=]2
BTST Rn, @Rd B | (Rn8 of @Rd16) - Z 4 ——|—]t|—|—|&
BTST Rn, @aa:8 B | (Rn8 of @aa8) - Z 4 ==t —|—|6
BLD #xx:3, Rd B| (#xx:3 0of Rd8) - C 2 e el e e 2
BLD #xx:3, @Rd B| (#xx:3 of @Rd16) - C 4 —|—| === 6
BLD #xx:3, @aa:8 B | (#xx:3 of @aa:8) - C 4 —_ | — =] — 6
BILD #xx:3, Rd B| (#xx:3 of Rd8) — C 2 —|—|=|=|— 2
BILD #xx:3, @Rd B | (#xx:3 of @Rd16) - C 4 —|—|=| == 6
BILD #xx:3, @aa:8 B| (#xx:3 of @aa:8) — C 4 == 6
BST #xx:3, Rd B| C - (#xx:3 of Rd8) 2 ——|—|—|—]—] 2
BST #xx:3, @Rd B| C - (#xx:3 of @Rd16) 4 —|—|—|—|—|— 8
BST #xx:3, @aa:8 B| C - (#xx:3 of @aa:8) 4 —|—|—|—|—|—1 8

115

Table 2-2. List of Instructions (5)

Addressing Mode and
Instruction Length (Bytes)

x
AR :

S © @ it -)

o Branching | @ c & 2 g & 2| condition Code 5

Mnemonic | Operation | Condition | X| & SRR g ElhNEZVE S
BIST #xx:3, Rd B| C - (#xx:3 of Rd8) 2 —|—|=|=|=]|—| 2
BIST #xx:3, @Rd B| C - (#xx:3 of @Rd16) 4 —|—|=|—|—|—| 8
BIST #xx:3, @aa:8 B| C - (#xx:3 of @aa:8) 4 —|—|—|—|—|—| 8
BAND #xx:3, Rd B | CO#xx:3 of Rd8) - C 2 —_——|—|—|—]]2
BAND #xx:3, @Rd B | CO#xx:3 of @Rd16) — C 4 — | —|—|—|—| |6
BAND #xx:3, @aa:8 B | CO#xx:3 of @aa:8) - C 4 —|—|—|—|—| ¢t |6
BIAND #xx:3, Rd B | CO(#xx:3 of Rd8) - C 2 —|—|=]—=|=]t]|2
BIAND #xx:3, @Rd B | CO#xx:3 of @Rd16) — C 4 S R B B
BIAND #xx:3, @aa:8 B | CO({#xx:3 of @aa:8) - C 4 —|—|—]——| t |6
BOR #xx:3, Rd B | CO#xx:3 of Rd8) - C 2 —_——]—|—|—]]2
BOR #xx:3, @Rd B | CO#xx:3 of @Rd16) — C 4 — | —|—|—|—| |6
BOR #xx:3, @aa:8 B | CO#xx:3 of @aa:8) - C 4 ——|—|—]—| 1|6
BIOR #xx:3, Rd B | CO(#xx:3 of Rd8) - C 2 —|—|=|—=|=]t]| 2
BIOR #xx:3, @Rd B | CO#xx:3 of @Rd16) — C 4 —|—|—|——| 6
BIOR #xx:3, @aa:8 B | CO{#xx:3 of @aa:8) - C 4 —|—|—]——| t |6
BXOR #xx:3, Rd B| CO@#xx:30fRd8) - C 2 —_——]—|—|—]]2
BXOR #xx:3, @Rd B | CO(#xx:3 of @Rd16) - C 4 — | —|—|—|—| |6
BXOR #xx:3, @aa:8 B | CO#xx:3 of @aa:8) -~ C 4 —|—|—|—|—| |6
BIXOR #xx:3, Rd B | CO(#xx:3 of Rd8) -~ C 2 —|—|=|—=|=]t]|2
BIXOR #xx:3, @Rd B | CO@#xx:3 of @Rd16) — C 4 ——|—|==]1]6
BIXOR #xx:3, @aa:8 B | CO(#xx:3 of @aa:8) — C 4 —|—|—]——| t |6
BRA d:8 (BT d:8) —| PC < PC+d:8 2 _] —|—|—]—] 4
BRN d:8 (BF d:8) —| PC « PC+2 2 — = === 4
BHI d:8 —| if condition | CIz =0 2 =] —=|—] 4
BLS d:8 _ isgufthe” cz=1 2 N O O I A
BCC d:8 (BHS d:8) —| PC+d:8 C=0 2 ——|—|—=|—=]—] 4
BCS d:8 (BLO d:8) _| elsenexti | oy 2 N R R R O O
BNE d:8 — Z=0 2 | —|—|—=|—|—| 4
BEQ d:8 — zZ=1 2 —|—|—|—=|—=|—| 4
BVC d:8 — V=0 2 —|—|—|—=|—|—| 4
BVS d:8 — V=1 2 —|—|—|—=|—|—| 4

116

Table 2-2. List of Instructions (6)

Addressing Mode and
Instruction Length (Bytes)

*
2 |5 g
4 S
g ¢ QS g &
~ w - e —
© Branching 93 £ ; E g g Cg) % Condition Code 5
Mnemonic | Operation | Condion | X £/ &/ & & @& & @ EI HN Z V € |2
BPL d:8 — | ifcondition | N=0 2 =] 4
is true then
BMI d:8 —| pC - N=1 2 — | —|—|—=|—=|—] 4
BGE d:8 —| PC+d:8 NOV =0 2 — | —|—| === 4
BLT d:8 _| elsenext | oy =g 2 N R R R
BGT d:8 — ZONOV) =0 2 ——|—=|—=|—=|—] 4
BLE d:8 — ZONOV) =1 2 — | —|—|—=|—=|—] 4
JMP @Rn —| PC - Rn16 2 =] === 4
JMP @aa:16 —| PC < aa:l6 4 —|—|—|—|—|—| 6
JMP @ @aa:8 —| PC « @aa:8 2 —|—|—|—|—|—| 8
BSR d:8 —| SP-2 - SP 2 —|—|—|—|—|—| 6
PC - @SP
PC ~ PC+d:8
JSR @Rn —| SP-2 - SP 2 — | —|—|—|—|—| 6
PC - @SP
PC ~ Rnl16
JSR @aa:16 —| SP-2 - SP 4 — | —|—|—|—|—| 8
PC - @SP
PC ~ aa:1l6
JSR @@aa:8 SP-2 - SP 2 | ——|—|—|—8
PC - @SP
PC - @aa:8
RTS —| PC - @SP 2| —|—|—|—|—|—| 8
SP+2 - SP
RTE —| CCR - @SP 2| ¢t et t])10
SP+2 - SP
PC - @SP
SP+2 - SP
SLEEP —| Transit to sleep mode. 2| —|—|—|—|—|—| 2
LDC #xx:8, CCR B | #xx:8 - CCR 2 O R R A N A)
LDC Rs, CCR B| Rs8 - CCR 2 Tt ejr|]2
STC CCR, Rd B| CCR - Rd8 2 —|—|—|—=—]—] 2
ANDC #xx:8, CCR B | CCR#xx:8 — CCR 2 Tl el |t t)2
ORC #xx:8, CCR B | CCR#xx:8 - CCR 2 o A

117

Table 2-2. List of Instructions (7)

Addressing Mode and
Instruction Length (Bytes)

Condition Code

Mnemonic I HN Z V C

?-Rn/@Rn+
Daa:8/16
2(d:8, PC)

txx:8/16

n

2RN
D(d:16, Rn)
2@aa
mplied

Operation

Size

XORC #xx:8, CCR B | CCRO#xx:8 - CCR 2 R R O O

NOP —| PC < PC+2 2| —|—|—|—|—|—

0 | | N o, of States *

EEPMOV —| ifR4L 20 4| —|—|—|—|—|—
Repeat @R5 - @R6
R5+1 - R5
R6+1 - R6
R4L-1 - R4L
UntilR4L =0
else next;

Notes: * The number of execution states indicated here assumes that the operation code and operand data are
in on-chip memory. For other cases, refer to section 2.5, Number of Execution States.

Set to 1 when there is a carry or borrow at bit 11; otherwise cleared to 0.

When the result is 0, the previous value remains unchanged; otherwise cleared to 0.

Set to 1 when there is a carry in the adjusted result; otherwise the previous value remains unchanged.
The number of execution states is 4n + 9, with n being the value set in R4L.

Set to 1 when the divisor is negative; otherwise cleared to 0.

Set to 1 when the divisor is 0; otherwise cleared to 0.

oooood

118

2.5 Number of Execution States

The tables here can be used to calculate the number of states required for instruction executic
Table 2-3 indicates the number of states required for each cycle (instruction fetch, branch
address read, stack operation, byte data access, word data access, internal operation).

Table 2-4 indicates the number of cycles of each type occurring in each instruction. The total
number of states required for execution of an instruction can be calculated from these two
tables as follows:

Execution states =4 9 + Jx I+ KxSK+ L xS + M x SM + N x SN

Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is
accessed.

1. BSET #0, @FFO00
From table 2-4:
I=L=2, J=K=M=N=0
From table 2-3:
S=2, $=2
Number of states required for execution x 2+ 2x2 =8
When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM,
and on-chip RAM is used for stack area.

2. JSR @@ 30
From table 2-4:
=2, J=K=1, L=M=N=0
From table 2-3:
S=9=XK=2
Number of states required for execution x 2+ 1x 2+ 1x2 =8

119

Table 2-3. Number of States Taken by Each Cycle in Instruction Execution

Execution Status Access Location
(instruction cycle) On-Chip Memory On-Chip Peripheral Module
Instruction fetch s

Branch addressread JS

Stack operation IS 2

Byte data access LS 2 or 3*
Word data access MS

Internal operation s 1

* Depends on which on-chip module is accessed. See the applicable hardware manual for
details.

120

Table 2-4. Number of Cycles in Each Instruction

Instruction

Mnemonic

Instruction
Fetch

Branch
Addr. Read

Stack
Operation

Byte Data
Access

Word Data
Access

Internal
Operatio)

-

J

K

L

M

N

ADD

ADD.B #xx:8, Rd
ADD.B Rs, Rd
ADD.W Rs, Rd

ADDS

ADDS.W #1/2, Rd

1

1
1
1

ADDX

ADDX.B #xx:8, Rd
ADDX.B Rs, Rd

AND

AND.B #xx:8, Rd
AND.B Rs, Rd

ANDC

ANDC #xx:8, CCR

BAND

BAND #xx:3, Rd
BAND #xx:3, @Rd
BAND #xx:3, @aa:8

Bcc

BRA d:8 (BT d:8)
BRN d:8 (BF d:8)
BHI d:8
BLS d:8
BCC d:8 (BHS d:8)
BCS d:8 (BLO d:8)
BNE d:8
BEQ d:8
BVC d:8
BVS d:8
BPL d:8
BMI d:8
BGE d:8
BLT d:8
BGT d:8
BLE d:8

1
1
1
1
1
1
2
2
2
2

N

NI\JI\J[\JNI\)I\)NI\JI\)NN

BCLR

BCLR #xx:3, Rd
BCLR #xx:3, @Rd
BCLR #xx:3, @aa:8
BCLR Rn, Rd

P oo NP

121

=)

Instruction | Branch Stack Byte Data| Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access| Operatio
I J K L M N

BCLR BCLR Rn, @Rd 2 2

BCLR Rn, @aa:8 2 2
BIAND BIAND #xx:3, Rd 1

BIAND #xx:3, @Rd 2 1

BIAND #xx:3, @aa:8 2 1
BILD BILD #xx:3, Rd 1

BILD #xx:3, @Rd 2 1

BILD #xx:3, @aa:8 2 1
BIOR BIOR #xx:3, Rd 1

BIOR #xx:3, @Rd 2 1

BIOR #xx:3, @aa:8 2 1
BIST BIST #xx:3, Rd 1

BIST #xx:3, @Rd 2 2

BIST #xx:3, @aa:8 2 2
BIXOR BIXOR #xx:3, Rd 1

BIXOR #xx:3, @Rd 2 1

BIXOR #xx:3, @aa:8 2 1
BLD BLD #xx:3, Rd 1

BLD #xx:3, @Rd 2 1

BLD #xx:3, @aa:8 2 1
BNOT BNOT #xx:3, Rd 1

BNOT #xx:3, @Rd 2 2

BNOT #xx:3, @aa:8 2 2

BNOT Rn, Rd 1

BNOT Rn, @Rd 2 2

BNOT Rn, @aa:8 2 2
BOR BOR #xx:3, Rd 1

BOR #xx:3, @Rd 2 1

BOR #xx:3, @aa:8 2 1
BSET BSET #xx:3, Rd 1

BSET #xx:3, @Rd 2 2

BSET #xx:3, @aa:8 2 2

BSET Rn, Rd 1

BSET Rn, @Rd 2 2

122

-

Instruction | Branch Stack Byte Data| Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access| Operatig
| J K L M N
BSET BSET Rn, @aa:8 2 2
BSR BSR d:8 2 1
BST BST #xx:3, Rd 1
BST #xx:3, @Rd 2 2
BST #xx:3, @aa:8 2 2
BTST BTST #xx:3, Rd 1
BTST #xx:3, @Rd 2 1
BTST #xx:3, @aa:8 2 1
BTST Rn, Rd 1
BTST Rn, @Rd 2 1
BTST Rn, @aa:8 2 1
BXOR BXOR #xx:3, Rd 1
BXOR #xx:3, @Rd 2 1
BXOR #xx:3, @aa:8 2 1
CMP CMP. B #xx:8, Rd 1
CMP. B Rs, Rd 1
CMP.W Rs, Rd 1
DAA DAA.B Rd 1
DAS DAS.B Rd 1
DEC DEC.BRd 1
DIVXU DIVXU.B Rs, Rd 1 12
EEPMOV | EEPMOV 2 2n+2* 1
INC INC.B Rd 1
JMP JMP @Rn 2
JMP @aa:16 2 2
JMP @@aa:8 2 1
JSR JSR @Rn 2 1
JSR @aa:16 2 1 2
JSR @@aa:8 2 1 1
LDC LDC #xx:8, CCR 1
LDC Rs, CCR 1
MOV MOV.B #xx:8, Rd 1
MOV.B Rs, Rd 1
MOV.B @Rs, Rd 1 1

123

)

Instruction | Branch Stack |Byte Data|Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access| Operatio
| J K L M N
MOV MOV.B @(d:16, Rs), Rd 2 1
MOV.B @Rs+, Rd 1 1 2
MOV.B @aa:8, Rd 1 1
MOV.B @aa:16, Rd 2 1
MOV.B Rs, @Rd 1 1
MOV.B Rs, @(d:16, Rd 2 1
MOV.B Rs, @-Rd 1 1 2
MOV.B Rs, @aa:8 1 1
MOV.B Rs, @aa:16 2 1
MOV.W #xx:16, Rd 2
MOV.W Rs, Rd 1
MOV.W @Rs, Rd 1 1
MOV.W @(d:16, Rs), Rd 2 1
MOV.W @Rs+, Rd 1 1 2
MOV.W @aa:16, Rd 2 1
MOV.W Rs, @Rd 1 1
MOV.W Rs, @(d:16, Rd) 2 1
MOV.W Rs, @-Rd 1 1 2
MOV.W Rs, @aa:16 2 1
MULXU |MULXU.B Rs, Rd 1 12
NEG NEG.B Rd 1
NOP NOP 1
NOT NOT.B Rd 1
OR OR.B #xx:8, Rd 1
OR.B Rs, Rd 1
ORC ORC #xx:8, CCR 1
POP POP Rd 1 1 2
PUSH PUSH Rs 1 1 2
ROTL ROTL.B Rd 1
ROTR ROTR.B Rd 1
ROTXL ROTXL.B Rd 1
ROTXR ROTXR.B Rd 1
RTE RTE 2 2 2
RTS RTS 2 1 2

124

-

Instruction | Branch Stack Byte Data| Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access| Operatig
I J K L M N

SHLL SHLL.B Rd 1
SHAL SHAL.B Rd 1
SHAR SHAR.B Rd 1
SHLR SHLR.BRd 1
SLEEP SLEEP 1
STC STC CCR, Rd 1
SUB SUB.B Rs, Rd 1

SUB.W Rs, Rd 1
SUBS SUBS.W #1/2, Rd 1
SUBX SUBX.B #xx:8, Rd 1

SUBX.B Rs, Rd 1
XOR XOR.B #xx:8, Rd 1

XOR.B Rs, Rd 1
XORC XORC #xx:8, CCR 1

* n: Initial value in R4L. The source and destination operands are accessed n + 1 times eacl

125

There are three CPU operation states, namely, program execution state, power-down state, ar
exception-handling state. In power-down state there are sleep mode, standby mode, and watt
mode. These operation states are shown in figure 3-1. Figure 3-2 shows the state transitions

Section 3. CPU Operation States

For further details please refer to the applicable hardware manual.

State

F# Program execution state Active mode |

The CPU executes
successive program
instructions in low-
speed operations,
synchronized by the

stopped to conserve power.

4 Exception-handling state

A transient state in which the CPU changes
the processing flow due to a reset or an interrupt.

Subactive mode } ”””

subclock.
4 Power-down state Sleep mode } ”””
A state in which some or all
of the chip functions are Standby mode } ”””

Watch mode } ”””

The CPU executes successive program instructions,
synchronized by the system clock.

{ Low-power modes

Figure 3-1. CPU Operation States

127

o Reset cleared Exception-
eset state handling state
—

Reset occurs

Interrupt Interrupt Interrupt handling

Reset raised raised complete

occurs
L —

P d Program
ower-down state _ _ execution state
SLEEP instruction executed

Note: On the transitions between modes, see the applicable hardware manual.

Figure 3-2. State Transitions
3.1 Program Execution State
In program execution state the CPU executes program instructions in sequence.
3.2 Exception Handling States
Exception-handling states are transient states occurring when exception handling is raised by
reset or interrupt, and the CPU changes its normal processing flow, branching to a start addre:
acquired from a vector table. In exception handling caused by an interrupt, PC and CCR
values are saved to the stack, with reference made to a stack pointer (R7).
3.2.1 Types and Priorities of Exception Handling
Exception handling includes processing of reset exceptions and of interrupts. Table 3-1

summarizes the factors causing each kind of exception, and their priorities. Reset exception
handling has the highest priority.

128

Table 3-1. Types of Exception Handling and Priorities

Timing for start of
Priority =~ Exception source Detection timing exception handling
High Reset Clock-synchronous Reset exception handling starts as
soon as RES pin changes from low
to high.
Interrupt End of instruction When an interrupt request is made,

execution* interrupt exception handling starts
after execution of the present
Low instruction is completed.

* Interrupt detection is not made upon completion of ANDC, ORC, XORC, and LDC
instruction execution, nor upon completion of reset exception handling.

3.2.2 Exception Sources and Vector Table
The factors causing exception handling can be classified as in figure 3-3.

For details of exception handling, the vector numbers of each source, and the vector addresse
see the applicable hardware manual.

Reset
Exception source External interrupt

Interrupt

Internal interrupt
(interrupt raised by on-chip peripheral module)

Figure 3-3. Classification of Exception Sources

129

3.2.3 Outline of Exception Handling Operation

A reset has the highest priority of all exception handling. After the RES pin goes to low level
putting the CPU in reset state, the RES pin is then put at high level, and reset exception
handling is started at the point when the reset conditions are met. For details on reset
conditions refer to the applicable hardware manual. When reset exception handling is started.

the CPU gets a start address from the exception handling vector table, and starts executing th
exception handling routine from that address. During execution of this routine and
immediately after, all interrupts including NMI are masked.

When interrupt exception handling is started, the CPU refers to the stack pointer (R7) and
pushes the PC and CCR contents to the stack. The CCR | bit is then set to 1, a start address
acquired from the exception handling vector table, and the interrupt exception handling routine
is executed from this address. The stack state in this case is as shown in figure 3-4.

SP -4 SP (R7) —> CCR
SP-3 SP+1 CCR*
SP-2 SP +2 PCh
sP-1 SP+3 PC_
SP (R7) — SP+4 Even-numbered
——— Stack —— address
Prior to start of interrupt ———— = After completion of interrupt
exception handling Contents exception handling

) saved to stack
Notation

PCh: Upper 8 bits of program counter (PC)
PC,: Lower 8 bits of program counter (PC)
CCR: Condition code register

SP: Stack pointer

Notes: * Ignored on return from interrupt.
1. PC shows the address of the first instruction to be executed upon
return from the interrupt.
2. Saving and restoring of register contents must always be done
in word size, and must start from an even-numbered address.

Figure 3-4. Stack State after Completion of Interrupt Exception Handling

130

3.3 Reset State

When the RES pin goes to low level, all processing stops and the system goes to reset state.
The | bit of the condition code register (CCR) is set, masking all interrupts.

After the RES pin is changed externally from low to high level, reset exception handling starts
at the point when the reset conditions are met. For details on reset conditions refer to the

applicable hardware manual.

3.4 Power-Down State

In power-down state the CPU operation is stopped, reducing power consumption. For details
see the applicable hardware manual.

131

Section 4. Basic Operation Timing

CPU operation is synchronized by a clogk (The period from the rising edge @fo the next

rising edge is called one state. A memory cycle or bus cycle consists of two or three states.
For details on access to on-chip memory and to on-chip peripheral modules see the applicable
hardware manual.

4.1 On-chip Memory (RAM, ROM)

Two-state access is employed for high-speed access to on-chip memory. The data bus width
16 bits, allowing access in byte or word size. Figure 4-1 shows the on-chip memory access
cycle.

; Bus cycle ;
-y

T, state i T, state

Internal address bus Address
Internal read signal
Internal data bus*

(read access)

Read data

Internal write signal

Internal data bus*

: Write data
(write access)

T a0

x
I
g

Note: A 16-bit data bus is used making possible access to word-size
data in 2 states.

Figure 4-1. On-Chip Memory Access Cycle

133

4.2 On-chip Peripheral Modules and External Devices

On-chip peripheral modules are accessed in two or three states. The data bus width is 8 bits,
S0 access is made in byte size only. Access to word data or instruction codes is not possible.
Figure 4-2 shows the on-chip peripheral module access cycle.

Bus cycle

: T, state T, state |
’ N A A
Internal address bus >< Ad diress ><:
Internal read signal —\ /7

Internal data bus* \
(read access) J

Internal write signal \—/7
Internal data bus* A\ " >7
(write access) / ‘ Write data

(a) Two-state access

Read data

Bus cycle

A
Y

T, state i T, state i T3 state
e

Internal address bus >< Address

Internal read signal \

Internal data bus* —\
(read access) / Read data

Internal write signal \

Internal data bus* A\
_

(write access) Write data‘

=
—
-
e
-

(b) Three-state access

Note: An 8-bit data bus is used.

Figure 4-2. On-Chip Peripheral Module Access Cycle

134

H8/300L Series Programming Manual
Publication Date: 1st Edition, December 1991

Published by: Business Planning Division
Semiconductor & Integrated Circuits
Hitachi, Ltd.

Edited by: Technical Documentation Group

Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitachi, Ltd., 1991. All ghts reserved. Printed inpkmn.

