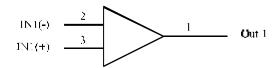
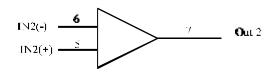
Low Power Low Offset Voltage Dual Comparators


The SL393 consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages.


Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates.

- Single or Split Supply Operation
- Low Input Bias Current
- Low Input Offset Current
- Input Common Mode Voltage Range to Gnd
- Low Output Saturation Voltage
- TTL and CMOS Compatible

LOGIC DIAGRAM

 $PIN 8 = V_{CC}$ PIN 4 = GND

SL393

MAXIMUM RATINGS*

Symbol	Parameter	Parameter Value	
V_{CC}	Power Supply Voltages		
	Single Supply Split Supplies	36 ±18	V
V_{IDR}	Input Differential Voltage Range	36	V
V_{ICR}	Input Common Mode Voltage Range (1)	-0.3 to $V_{\rm CC}$	V
I_{SC}	Output Short Circuit to Ground	Continuous	
I_{IN}	Input Current, per pin (2)	50	mA
T_{J}	Junction Temperature		
	Plastic Packages	150	°C
Tstg	Storage Temperature	-65 to +150	°C
T_{L}	Lead Temperature, 1mm from Case for 10 Seconds	260	°C
P _D	Power Dissipation @T _A =25°C Plastic Package Derate above 25°C	570 5.7	μW mW/°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur.

Functional operation should be restricted to the Recommended Operating Conditions.

Notes:

- 1. Split Power Supplies.
- 2. V_{IN} <-0.3V. This input current will only exist when voltage at any of the input leads is driven negative.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage	±2.5 or 5.0	±15 or 30	V
T_{A}	Operating Temperature, All Package Types	0	+70	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range $GND \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

$\textbf{DC ELECTRICAL CHARACTERISTICS}(T_A = 0 \text{ to } +70 ^{\circ}\text{C})$

Symbol	Parameter	Test Conditions	Guaranteed Limit			
			Min	Тур	Max	Unit
V _{IO}	Input Offset Voltage	$V_0 = 1.4V \\ V_{CC} = 5.0-30V; R_S \le 100\Omega \\ V_{ICR} = 0V - (V_{CC}-1.5)V$	-		9.0	mV
$ m I_{IB}$	Input Bias Current	V ₀ =1.4V V _{CC} =5.0-30V V _{ICR} =0V - (V _{CC} -1.5)V	-		400	nA
I_{IO}	Input Offset Current	V ₀ =1.4V V _{CC} =5.0-30V V _{ICR} =0V - (V _{CC} -1.5)V	-		±150	nA
V_{ICR}	Input Common Mode Voltage Range	V _{CC} =5.0-30V	0		V _{CC} -2.0V	V
I_{CC}	Supply Current	$R_L = \infty, V_{CC} = 5.0$ $R_L = \infty, V_{CC} = 30V$	-		1.0* 2.5*	mA
A_{VOL}	Voltage Gain	V_{CC} =15V, R_L =15K Ω	-	200*	_	V/mV
t ₁	Large Signal Response Time	$\begin{aligned} &V_{IN} = TTL \ Logic \ Swing, \\ &V_{ref} = 1.4V, \ V_{CC} = 5.0V, \\ &R_L = 5.1K\Omega, \ V_{RL} = 5.0V \end{aligned}$	-	300*	-	ns
t_2	Response Time (Note 6)	V_{CC} =5.0V, R_L =5.1K Ω , V_{RL} =5.0V	-	1.3*	-	μs
I_{sink}	Output Sink Current	$V_{I}(-)=1.0V, V_{I}(+)=0V, V_{0}\leq 1.5V, V_{CC}=5.0V$	6.0*	-	-	mA
V_{sat}	Saturation Voltage	$V_{I}(-)=1.0V, V_{I}(+)=0V, \\ I_{sink}\leq 4.0mA, V_{CC}=5.0V$	-	-	700	mV
I_{OL}	Output Leakage Current	V _I (+)=1.0V, V _I (-)=0V, V ₀ =5.0V V ₀ =30V		0.1*	1000	nA
V_{IDR}	Differential Input Voltage Range	All $V_{IN} \ge GND$ or V-Supply (if used)			V _{CC}	V

^{*=@25°}C

TYPICAL PERFORMANCE CHARACTERISTICS

 $(V_{CC}=1.5V, T_A=+25^{\circ}C, (each comporator))$

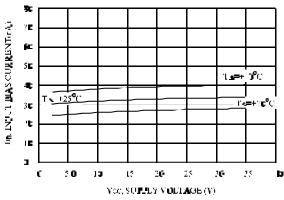


Figure 1. Input Bias Current versus Power Supply Voltage

Figure 2. Output Saturation Voltage versus Output
Sink Current

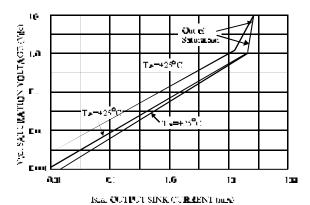


Figure 3. Output Saturation Voltage versus Output Sink Current

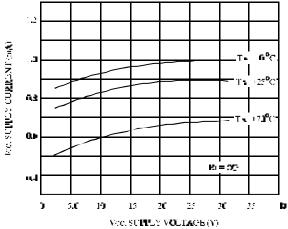


Figure 4. Power Supply Current versus Power Supply Voltage

Figure 5. Power Supply Current versus Power Supply Voltage