SWITCHMODE [™] **Series NPN Silicon Power Transistor** ... designed for high speed, high current, high power applications. • High DC current gain: $$h_{FE}$$ min = 20 at I_C = 25 A = 10 at I_C = 50 A • Low V_{CE(sat)}: $$\begin{split} &V_{CE(sat)} \text{ max.} = 0.6 \text{ V at } I_C = 25 \text{ A} \\ &= 0.9 \text{ V at } I_C = 50 \text{ A} \end{split}$$ • Very fast switching times: $$T_F = 0.25 \ \mu s \ at \ I_C = 50 \ A$$ ## **MAXIMUM RATINGS** | Rating | Symbol | BUV20 | BUV60 | Unit | |--|-----------------------------------|------------|-------|------------| | Collector–Emititer Voltage | V _{CEO(sus)} | 125 | | Vdc | | Collector–Base Voltage | V _{CBO} | 160 | 260 | Vdc | | Emitter–Base Voltage | V_{EBO} | 7 | | Vdc | | Collector–Emitter Voltage (V _{BE} = -1.5 V) | V _{CEX} | 160 | 260 | Vdc | | Collector–Emitter voltage ($R_{BE} = 100 \Omega$) | V _{CER} | 150 | 260 | Vdc | | Collector–Current — Continuous
— Peak (PW ≤
10 ms) | I _C
I _{CM} | 50
60 | | Adc
Apk | | Base-Current continuous | I _B | 10 | | Adc | | Total Power Dissipation @ T _C = 25°C | P _D | 250 | | Watts | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -65 to 200 | | °C | ## THERMAL CHARACTERISTICS | Characteristic | Symbol | BUV20 | BUV60 | Unit | |--------------------------------------|----------------------|-------|-------|------| | Thermal Resistance, Junction to Case | θ_{JC} | 0.7 | | °C/W | Figure 1. Power Derating # **BUV20 BUV60** 50 AMPERES NPN SILICON POWER METAL TRANSISTOR 125 VOLTS 250 WATTS CASE 197A-05 TO-204AE (TO-3) # **BUV20 BUV60** # **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Max | Unit | |---|--|-----------------------|-----------|-------------------|------| | OFF CHARACTERISTICS ¹ | | | • | • | • | | Collector–Emitter Sustaining Vol
(I _C = 200 mA, I _B = 0, L = 25 m | S . | V _{CEO(sus)} | 125 | | Vdc | | Collector Cutoff Current at Reve
$(V_{CE} = 140 \text{ V}, V_{BE} = -1.5 \text{ V})$
$(V_{CE} = 140 \text{ V}, V_{BE} = -1.5 \text{ V}, T_{CE} = 260 \text{ V}, V_{BE} = -1.5 \text{ V})$ | BUV20 | I _{CEX} | | 3.0
12 | mAdo | | Collector–Emitter Cutoff Current (V _{CE} = 100 V) | BUV20 | I _{CEO} | | 3.0 | mAdo | | Emitter–Base Reverse Voltage (I _E = 50 mA) | BUV20, BUV60 | V _{EBO} | 7 | | V | | Emitter–Cutoff Current (V _{EB} = 5 V) BUV20 | | I _{EBO} | | 1.0 | mAdo | | SECOND BREAKDOWN | | | <u>'</u> | 1 | • | | Second Breakdown Collector Current with base forward biased (V _{CE} = 20 V, t = 1 s) (V _{CE} = 40 V, t = 1 s) | | I _{S/b} | 12
1.5 | | Adc | | ON CHARACTERISTICS ¹ | | | <u>I</u> | I | | | DC Current Gain
($I_C = 25 \text{ A}, V_{CE} = 2 \text{ V}$)
($I_C = 50 \text{ A}, V_{CE} = 4 \text{ V}$) | BUV20
BUV20 | h _{FE} | 20
10 | 60
- | | | Collector–Emitter Saturation Vol
($I_C = 25 \text{ A}, I_B = 2.5 \text{ A}$)
($I_C = 50 \text{ A}, I_B = 5 \text{ A}$) | tage BUV20 BUV20 | V _{CE(sat)} | | 0.6
1.2 | Vdc | | Base–Emitter Saturation Voltage $(I_C = 50 \text{ A}, I_B = 5 \text{ A})0$ | | V _{BE(sat)} | | 2.0 | Vdc | | | tage BUV60 BUV60 BUV60 | V _{CE(sat)} | | 0.9
0.9
1.2 | Vdc | | Base–Emitter Saturation Voltage $(I_C = 50 \text{ A}, I_B = 5 \text{ A})$ $(I_C = 60 \text{ A}, I_B = 7.5 \text{ A})$ | | V _{BE(sat)} | | 1.6
1.8 | Vdc | | DYNAMIC CHARACTERISTICS | - | | | | • | | Current Gain — Bandwidth Prod
($V_{CE} = 15 \text{ V}, I_{C} = 2 \text{ A}, f = 4 \text{ MHz}$ | | f _T | 8.0 | | MHz | | SWITCHING CHARACTERISTIC | S (Resistive Load) | | | | | | Turn-on Time | | t _{on} | | 1.5 | μs | | Storage Time | $(I_C = 50 \text{ A}, I_{B1} = I_{B2} = 5 \text{ A}, V_{CC} = 30 \text{ V}, R_C = 0.6 \Omega)$ | ts | | 1.2 | | | Fall Time | 00 / 10 / | t _f | | 0.25 | | ¹ Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$, Duty Cycle $\leq 2\%$. Figure 2. Active Region Safe Operating Area Figure 3. "On" Voltages Figure 5. Resistive Switching Performance There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 2 is based on $T_C = 25^{\circ}C$. $T_{J(pk)}$ is variable depending on power level. Second breakdown limitations do not derate the same as thermal limitations. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. Figure 4. DC Current Gain R_C — Non inductive resistance Figure 6. Switching Times Test Circuit ### **BUV20 BUV60** #### PACKAGE DIMENSIONS # TO-204AE (TO-3) CASE 197A-05 ISSUE J #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI V14 FM 1082 - Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH | | OONTHOLLING DIMENSION. INON. | | | | | |-----|------------------------------|-----------|-------------|-----------|--| | | INCHES | | MILLIMETERS | | | | DIM | MIN | MAX | MIN | MAX | | | Α | 1.530 | 1.530 REF | | 38.86 REF | | | В | 0.990 | 1.050 | 25.15 | 26.67 | | | С | 0.250 | 0.335 | 6.35 | 8.51 | | | D | 0.057 | 0.063 | 1.45 | 1.60 | | | E | 0.060 | 0.070 | 1.53 | 1.77 | | | G | 0.430 BSC | | 10.92 BSC | | | | Н | 0.215 | BSC | 5.46 BSC | | | | K | 0.440 | 0.480 | 11.18 | 12.19 | | | L | 0.665 BSC | | 16.89 BSC | | | | N | 0.760 | 0.830 | 19.31 | 21.08 | | | Q | 0.151 | 0.165 | 3.84 | 4.19 | | | U | 1.187 BSC | | 30.15 BSC | | | | ٧ | 0.131 | 0.188 | 3.33 | 4.77 | | SWITCHMODE is a trademark of Semiconductor Components Industries, LLC (SCILLC) ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. # **PUBLICATION ORDERING INFORMATION** ## NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada N. American Technical Support: 800-282-9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor - European Support German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland ### CENTRAL/SOUTH AMERICA: Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com Toll-Free from Mexico: Dial 01-800-288-2872 for Access - then Dial 866-297-9322 ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support **Phone**: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001-800-4422-3781 Email: ONlit-asia@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 **Phone**: 81–3–5740–2700 **Email**: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.