Quad EIA-422/423 Line Receiver

Motorola's Quad EIA-422/3 Receiver features four independent receiver chains which comply with EIA Standards for the Electrical Characteristics of Balanced/Unbalanced Voltage Digital Interface Circuits. Receiver outputs are 74LS compatible, three-state structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. A PNP device buffers each output control pin to assure minimum loading for either logic one or logic zero inputs. In addition, each receiver chain has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms. A summary of MC3486 features include:

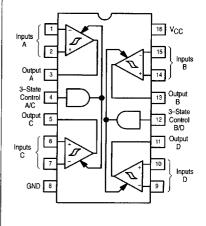
- Four Independent Receiver Chains
- Three-State Outputs
- High Impedance Output Control Inputs (PIA Compatible)
- Internal Hysteresis 30 mV (Typical) @ Zero Volts Common Mode
- Fast Propagation Times 25 ns (Typical)
- TTL Compatible
- Single 5.0 V Supply Voltage
- DS 3486 Provides Second Source

Receiver Chain Block Diagram Three-State Control Input Input Network Hysteresis Level Translator

MC3486

QUAD EIA-422/3 LINE RECEIVER WITH THREE-STATE OUTPUTS

SEMICONDUCTOR TECHNICAL DATA


D SUFFIX PLASTIC PACKAGE CASE 751B (SO-16)

P SUFFIX
PLASTIC PACKAGE
CASE 648

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC3486P	T _A = 0 to +70°C	Plastic DIP
MC3486D	1A = 010 +70 C	SO-16

6367253 0097836 145

7-86

MOTOROLA ANALOG IC DEVICE DATA

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	8.0	Vdc	
Input Common Mode Voltage	VICM	± 15	Vdc	
Input Differential Voltage	V _{ID}	± 25	Vdc	
Three-State Control Input Voltage	v _i	8.0	Vdc	
Output Sink Current	lo	50	mA	
Storage Temperature	T _{stg}	-65 to +150	°C	
Operating Junction Temperature	TJ	+150	°C	

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	4.75 to 5.25	Vdc
Operating Ambient Temperature	TA	0 to +70	°C
Input Common Mode Voltage Range	VICR	-7.0 to +7.0	Vdc
Input Differential Voltage Range	V _{IDR}	6.0	Vdc

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, minimum and maximum limits apply over recommended temperature and power supply voltage ranges. Typical values are for $T_A = 25^{\circ}C$, $V_{CC} = 5.0$ V and $V_{IK} = 0$ V. See Note 1.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage – High Logic State (Three–State Control)	VIH	2.0	_	-	٧
Input Voltage – Low Logic State (Three–State Control)	VIL	-	-	0.8	V
Differential Input Threshold Voltage, Note 2 $ (-7.0 \text{ V} \leqslant \text{V}_{IC} \leqslant 7.0 \text{ V}, \text{V}_{IH} = 2.0 \text{ V}) \\ (\text{I}_{O} = -0.4 \text{ mA}, \text{V}_{OH} \geqslant 2.7 \text{ V}) \\ (\text{I}_{O} = 8.0 \text{ mA}, \text{V}_{OL} \geqslant 0.5 \text{ V}) $	VTH(D)	-	-	0.2 0.2	V
Input Bias Current $ \begin{aligned} &(V_{CC}=0 \text{ V or } 5.25) \text{ (Other Inputs at 0 V)} \\ &(V_I=-10 \text{ V}) \\ &(V_I=-3.0 \text{ V}) \\ &(V_I=+3.0 \text{ V}) \\ &(V_I=+10 \text{ V}) \end{aligned} $	liB(D)	- - -		- 3.25 - 1.50 + 1.50 + 3.25	mA
Input Balance and Output Level $ (-7.0~V \leqslant V_{ C} \leqslant 7.0~V, V_{ H} = 2.0~V, \text{Note 3}) $ $ (I_{O} = -0.4~\text{mA}, V_{ D} = 0.4~V) $ $ (I_{O} = 8.0~\text{mA}, V_{ D} = -0.4~V) $	VOH VOL	2.7	-	_ 0.5	٧
Output Third State Leakage Current $(V_{I(D)} = + 3.0 \text{ V}, V_{IL} = 0.8 \text{ V}, V_{OL} = 0.5 \text{ V})$ $(V_{I(D)} = -3.0 \text{ V}, V_{IL} = 0.8 \text{ V}, V_{OH} = 2.7 \text{ V})$	loz	-		- 40 40	μА
Output Short–Circuit Current (V _{I(D)} = 3.0 V, V _{IH} = 2.0 V, V _O = 0 V, Note 4)	los	- 15	-	- 100	mA
Input Current – Low Logic State (Three–State Control) (VIL = 0.5 V)	ΙΙL	_	_	- 100	μА
Input Current – High Logic State (Three–State Control) (VIH = 2.7 V) (VIH = 5.25 V)	Ιн	-		20 100	μА
Input Clamp Diode Voltage (Three-State Control) (I _K = -10 mA)	VIK	-	-	- 1.5	V
Power Supply Current (V _{IL} = 2.0 V)	lcc	-	-	85	mA

NOTES: 1. All currents into device pins are shown as positive, out of device pins are negative. All voltage referenced to ground unless otherwise noted.

2. Differential input threshold voltage and guaranteed output levels are done simultaneously for worst case.

3. Refer to EIA-422/3 for exact conditions. Input balance and guaranteed output levels are done simultaneously for worst case.

4. Only one output at a time should be shorted.

MOTOROLA ANALOG IC DEVICE DATA

■ 6367253 0097837 O81 🔳 ·

7--87

SWITCHING CHARACTERISTICS (Unless otherwise noted, V_{CC} = 5.0 V and T_A = 25°C.)

Characteristics	Symbol	Min	Тур	Max	Unit
Propagation Delay Time Differential Inputs to Output					ns
(Output High to Low)	t _{PHL(D)}	_	_	35	
(Output Low to High)	tPLH(D)	-	_	30	İ
Propagation Delay time - Three-State					ns
Control to Output	1 1				
(Output Low to Third State)	tPLZ	_	_	35	
(Output High to Third State)	tPHZ	_	_	35	i
(Output Third State to High)	tPZH	_	_	30	
(Output Third State to Low)	tPZL	-	_	30	

Figure 1. Switching Test Circuit and Waveforms

Propagation Delay Differential Input to Output

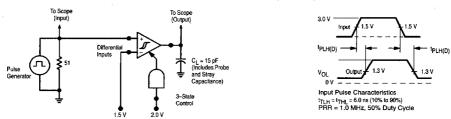
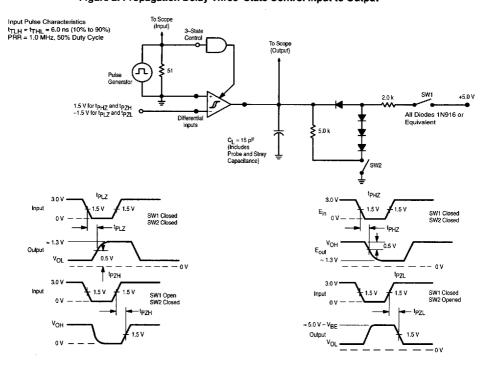
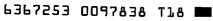




Figure 2. Propagation Delay Three-State Control Input to Output

7–88

MOTOROLA ANALOG IC DEVICE DATA