MB509

TWO MODULUS PRESCALER WITH STAND-BY MODE

TWO MODULUS PRESCALER WITH STAND-BY MODE

The Fujitsu MB509 is a low power, two modulus prescaler equipped with the standby mode. The MB509 is used in conjunction with a frequency synthesizer to form a Phase Locked Loop (PLL) and will divide the input frequency by the modulus of $65 / 65$ or $128 / 129$.

Power consumption is typically 11.5 mA at 5.0 V . under normal operation, with the current reduced to $180 \mu \mathrm{~A}$ in standby mode. By using MB509 with the MB87076, intermittent operating mode can be achieved.

FEATURES

- High Frequency Operation: $\quad \mathrm{fmax}=1.1 \mathrm{GHz} \max .\left(\mathrm{P}_{\mathrm{IN}}=-4 \mathrm{dBm}\right.$ min. $)$
- Pulse Swallow Function: 64/65, 128/129
- Power Supply Consumption: 58mW typ.
- Stand-by Current: $180 \mu \mathrm{~A}$ typ.
- Stable Output Amplitude: $\quad \mathrm{V}_{\mathrm{O}}=1.6 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ typ.
- Complete PLL synthesizer circuit with the Fujitsu MB87076, PLL frequency synthesizer IC
- Plastic 8-pin Dual-In-Line Package (Suffix: -P)

Plastic 8-pin Mini Flat Package (Suffix: -PF)

- Built-in a Termination Resistor

Stable output amplitude is obtained up to output load capacitance of 8 pF

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to V_{CC}	V
Output Current	I_{O}	10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

PS	SW	MC	Divide Ratio
H	H	H	$1 / 64$
H	H	L	$1 / 65$
H	L	H	$1 / 128$
H	L	L	$1 / 129$
L	-	-	Stand-by mode

Note: $\quad \mathrm{SW}: \quad \mathrm{H}=\mathrm{V}_{C C}, \mathrm{~L}=$ open
MC: $H=3.0 \mathrm{~V}$ to V_{CC},
$\mathrm{L}=\mathrm{GND}$ to 0.8 V
PS: $H=2.0 V$ to $V_{C c}$,
$\mathrm{L}=\mathrm{GND}$ to 0.4 V

Figure 1. MB509 Block Diagram

PIN DESCRIPTION

Pin Number	Symbol	
1	IN	Input
2	V $_{\text {CC }}$	Poscriptions
3	SW	Divide Ratio Control Input (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
6	MC	Modulus Control Input (See Divide Ratio Table)
7	PS	Stand-by Control Input (See Divide Ratio Table)
8	IN	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Power Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Operating Temperature	$\mathrm{T}_{\text {A }}$	-40	-	+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}	-	-	8	pF

ELECTRICAL CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Condition	Value			Unit
			Min.	Typ.	Max.	
Power Supply Curent	ICC		-	11.6	-	mA
	$\mathrm{I}_{\text {PS }}$	Stand-by mode	-	180	-	$\mu \mathrm{A}$
Output Amplitude	V_{O}	Built-in a Termination Resistor. Load Capacitance=8pF	1.0	1.6	-	V_{p-p}
Input Frequency	f_{IN}	With input coupling capacitor 1000 pF	10	-	1100	MHz
Input Signal Amplitude	$\mathrm{P}_{\text {IN }}$	-	-4	-	5.5	dBm
High Level Input Voltage for MC	V_{IH}	-	3.0	-	-	V
Low Level Input Voltage for MC	$\mathrm{V}_{\text {IL }}$	-	-	-	0.8	V
High Level Input Voltage for SW	$\mathrm{V}_{\mathrm{IHS}}{ }^{*}$		$\mathrm{V}_{C C}-0.1$	V_{CC}	$\mathrm{V}_{\mathrm{CC}}+0.1$	V
Low Level Input Voltage for SW	$\mathrm{V}_{\text {ILS }}$		Open			V
High Level Input Voltage for PS	V_{IH}	-	2.0	-	-	V
Low Level Input Voltage for PS	$\mathrm{V}_{\text {IL }}$	-	-	-	0.4	V
High Level Input Current for MC	IIH	$\mathrm{V}_{\mathrm{IH}}=3.0 \mathrm{~V}$	-	-	0.4	mA
Low Level Input Current for MC	IIL	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.2	-	-	mA
Modulus Set-up Time MC to Output	$\mathrm{t}_{\text {SET }}$	-	-	16	26	ns

Note: *Design Guarantee

Figure 2. Test Circuit

TIMING CHART (2 MODULUS)

Example: Divide ratio = 64/65

Note: When divide ratio of 65 is selected, positive pulse is added by one to 33 .
The typical set up time is 16 ns from the MC signal input to the timing of change of prescaler divide ratio.

TYPICAL CHARACTERISTICS CURVES

Figure 3. Input Signal Amplitude vs. Input Frequency

Figure 4. Waveform of Stand-by Mode

Figure 5. Typical Application Example

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

8-LEAD PLASTIC FLAT PACKAGE

 (CASE No: FPT-08P-M01)

DImensions in
© 1988 FUJITSU LIMITED F08002S-3C inches (millimeters)

Worldwide Headquarters

Japan	Fujitsu Limited	Asia		Fujitsu Microelectronics Asia PTE Limited
Tel: +81447543753	4-1-1 Kamiodanaka	Tel:	+65 2810770	\#05-08, 151 Lorong Chuan
Fax: +81447543332	Nakahara-ku, Kawasaki-shi.	Fax	+65 2810220	New Tech Park
	Kanagawa 211-88			Singapore 556741
	Japan			
http://www.fujitsu.co.jp/		http://www.fsl.com.sg/		
USA		Europe		
Tel: +14089229000	Fujitsu Microelectronics Inc	$\begin{aligned} & \text { Tel: +4961036900 } \\ & \text { Fax +4961036901 } \end{aligned}$		Fujitsu Mikroelektronik
Fax: +14089229179	3545 North First Street			GmbH
	San José CA 95134-1804			Am Siebenstein 6-10
	USA			D-63303 Dreieich-
				Buchschlag
				Germany
$\begin{aligned} & \text { Tel: +1 } 8008668608 \\ & \text { Fax: }+14089229179 \end{aligned}$	Customer Response Center	http://www.fujitsu.ede.com/		
	Mon-Fri: 7am-5pm (PST)			

http://www.fujitsumicro.com/

All Right Reserved.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu Microelectronics, Inc. assumes no responsibility for inaccuracies.
The information conveyed in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu Limited, its subsidiaries, or Fujitsu Microelectronics, Inc.

Fujitsu Microelectronics, Inc. reserves the right to change products or specifications without notice.
No part of the publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu Microelectronics, Inc.

