

APT10021JLL

1000V 37A 0.210Ω

POWER MOS 7™

Power MOS 7^{TM} is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7^{TM} by significantly lowering $R_{\text{DS}(ON)}$ and Q_g . Power MOS 7^{TM} combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

Increased Power Dissipation

• Lower Miller Capacitance

Easier To Drive

• Lower Gate Charge, Qg

• Popular SOT-227 Package

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT10021JLL	UNIT		
V _{DSS}	Drain-Source Voltage	1000	Volts		
I _D	Continuous Drain Current @ T _C = 25°C	37	A		
I _{DM}	Pulsed Drain Current ①	148	Amps		
V _{GS}	Gate-Source Voltage Continuous	±30	Valta		
V _{GSM}	Gate-Source Voltage Transient	±40	Volts		
P _D	Total Power Dissipation @ T _C = 25°C	690	Watts		
, D	Linear Derating Factor	5.52	W/°C		
T_J, T_{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C		
T _L	Lead Temperature: 0.063" from Case for 10 Sec.	300			
I _{AR}	Avalanche Current (Repetitive and Non-Repetitive)	37	Amps		
E _{AR}	Repetitive Avalanche Energy ①	50			
E _{AS}	Single Pulse Avalanche Energy ⁽⁴⁾	3600	mJ mJ		

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage $(V_{GS} = 0V, I_D = 250\mu\text{A})$	1000			Volts
I _{D(on)}	On State Drain Current ② $(V_{DS} > I_{D(on)} \times R_{DS(on)} Max, V_{GS} = 10V)$	37			Amps
R _{DS(on)}	Drain-Source On-State Resistance ② (V _{GS} = 10V, 0.5 I _{D[Cont.]})			0.210	Ohms
I _{DSS}	Zero Gate Voltage Drain Current $(V_{DS} = V_{DSS}, V_{GS} = 0V)$			100	μΑ
	Zero Gate Voltage Drain Current ($V_{DS} = 0.8 V_{DSS}$, $V_{GS} = 0V$, $T_{C} = 125$ °C)			500	
I _{GSS}	Gate-Source Leakage Current (V _{GS} = ±30V, V _{DS} = 0V)			±100	nA
V _{GS(th)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 5mA)$	3		5	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT Website - http://www.advancedpower.com

USA 405 S.W. Columbia Street EUROPE Chemin de Magret Bend, Oregon 97702-1035 F-33700 Merignac - France Phone: (541) 382-8028 Phone: (33) 5 57 92 15 15 FAX: (541) 388-0364

FAX: (33) 5 56 47 97 61

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		9980		
C _{oss}	Output Capacitance	V _{DS} = 25V		1650		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		328		
Qg	Total Gate Charge ^③	V _{GS} = 10V		382		
Q_{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		59		nC
Q_{gd}	Gate-Drain ("Miller") Charge	I _D = I _{D[Cont.]} @ 25°C		254		
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		18		
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		9		ns
t _{d(off)}	Turn-off Delay Time	$I_{D} = I_{D[Cont.]} @ 25^{\circ}C$		46		115
t _f	Fall Time	$R_{G} = 0.6\Omega$		11		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
I _s	Continuous Source Current (Body Diode)			37	A
I _{SM}	Pulsed Source Current (1) (Body Diode)			148	Amps
V _{SD}	Diode Forward Voltage ② (V _{GS} = 0V, I _S = -I _{D[Cont.]})			1.3	Volts
t rr	Reverse Recovery Time $(I_S = -I_{D[Cont.]}, dI_S/dt = 100A/\mu s)$		1300		ns
Q rr	Reverse Recovery Charge $(I_S = -I_{D[Cont.]}, dI_S/dt = 100A/\mu s)$		38.0		μC
dv/ _{dt}	Peak Diode Recovery dv/ _{dt} (5)			10	V/ns

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
R_{\thetaJC}	Junction to Case			0.18	°C/W
R_{\thetaJA}	Junction to Ambient			40	

¹ Repetitive Rating: Pulse width limited by maximum junction temperature.

2 Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%

- 3 See MIL-STD-750 Method 3471
- 4 Starting T_i = +25°C, L = 5.26mH, R_G = 25 Ω , Peak I_L = 37A
- (5) dv/_{dt} numbers reflect the limitations of the test circuit rather than the device itself. $I_S \le -I_{D[Cont.]}$ divide itself.

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)