FAIRCHILD

SEMICONDUCTOR TM

NC7ST00 TinyLogic[™] HST 2-Input NAND Gate

General Description

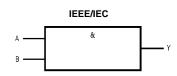
The NC7ST00 is a single 2-Input high performance CMOS NAND Gate, with TTL-compatible inputs. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation. ESD protection diodes inherently guard both inputs and output with respect to the $V_{\rm CC}$ and GND rails. High gain circuitry offers high noise immunity and reduced sensitivity to input edge rate. The TTL-compatible inputs facilitate TTL to NMOS/CMOS interfacing. Device performance is similar to MM74HCT but with 1/2 the output current drive of HC/HCT.

February 1997 Revised June 2000

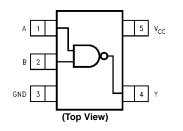
Ordering Code:										
Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As						
NC7ST00M5	MA05B	8S00	5-Lead SOT23, JEDEC MO-178, 1.6mm	250 Units on Tape and Reel						
NC7ST00M5X	MA05B	8S00	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel						
NC7ST00P5	MAA05A	T00	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	250 Units on Tape and Reel						
NC7ST00P5X	MAA05A	T00	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel						

Features

TTL-compatible inputs


■ Space saving SOT23 or SC70 5-lead package

 $\blacksquare \text{ High Speed; } t_{PD} < 7 \text{ ns typ, } V_{CC} = 5V, C_L = 15 \text{ pF}$


 \blacksquare Low Quiescent Power; I_{CC} <1 μA typ, V_{CC} = 5.5V

■ Balanced Output Drive; 2 mA IOL, -2 mA IOH

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
А, В	Inputs
Y	Output

Function Table

Y = AB

Inp	Output		
Α	В	Y	
L	L	Н	
L	Н	Н	
н	L	н	
н	н	L	

H = HIGH Logic Level L = LOW Logic Level

TinyLogic™ is a trademark of Fairchild Semiconductor Corporation.

© 2000 Fairchild Semiconductor Corporation DS012181

www.fairchildsemi.com

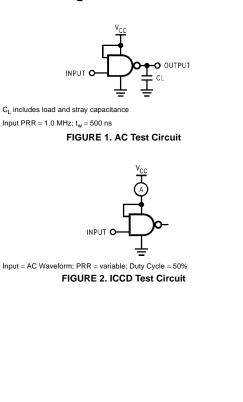
Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{IN} < -0.5V$	–20 mA
$V_{IN} \ge V_{CC} + 0.5V$	+20 mA
DC Input Voltage V _{IN}	-0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{OUT} < -0.5V$	–20 mA
$V_{OUT} > V_{CC} + 0.5V$	+20 mA
Output Voltage (V _{OUT})	–0.5V to V_{CC} + 0.5V
DC Output Source or	
Sink Current (I _{OUT})	±12.5 mA
DC V_{CC} or Ground Current per	
Supply Pin (I _{CC} or I _{GND})	±25 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	150°C
Lead Temperature (T _L);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SOT23-5	200 mW
SC70-5	150 mW

Recommended Operating Conditions (Note 2)

COnditions (Note 2)	
Supply Voltage	4.5V-5.5V
Input Voltage (V _{IN})	0.0V-V _{CC}
Output Voltage (V _{OUT})	0V-V _{CC}
Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$
Input Rise and Fall Time (t_r, t_f)	
$V_{CC} = 5.0 V$	0–500 ns
Thermal Resistance (θ_{JA})	
SOT23-5	300°C/W
SC70-5	425°C/W

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the design is reliable over its power supply, temperature, and output/input loading variables Fairchild does not recommend operation of circuits outside the databook specifications. Note 2: Unused inputs must be held HIGH or LOW. They may not float.

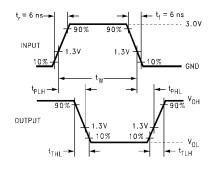
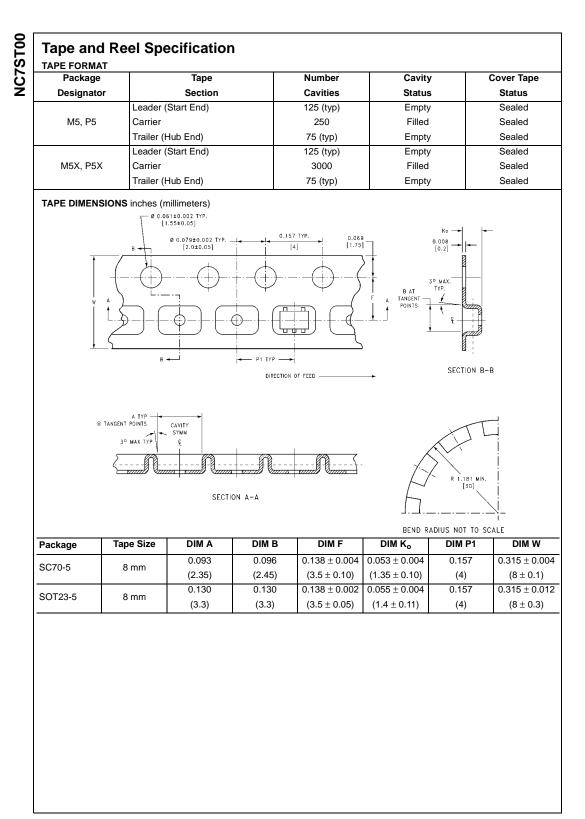
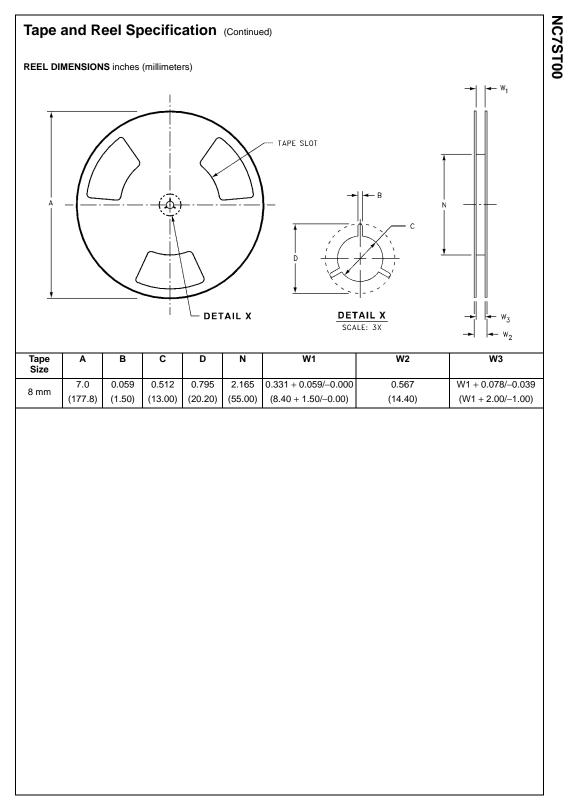

DC Electrical Characteristics

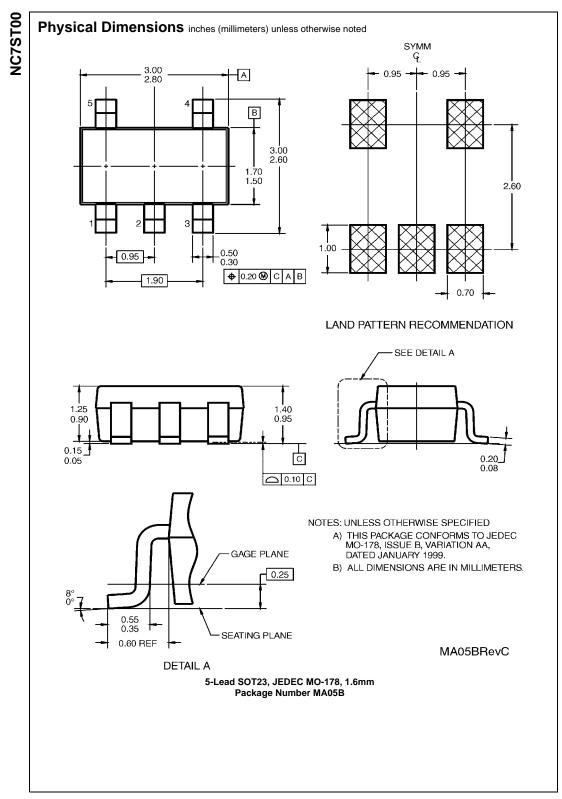
Symbol	Parameter	v _{cc}	$T_A = +25^{\circ}C$			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	
Gymbol	ranameter	(V)	Min	Тур	Max	Min	Max	onna	Conditions	
VIH	HIGH Level Input Voltage	4.5–5.5	2.0			2.0		V		
V _{IL}	LOW Level Input Voltage	4.5–5.5			0.8		0.8	V		
V _{OH}	HIGH Level Output Voltage	4.5	4.4	4.5		4.4			$I_{OH} = -20 \ \mu A$	
		4.5	4.18	4.35		4.13		V	$I_{OH} = -2 \text{ mA}$	
									$V_{IN} = V_{IL}$	
V _{OL}	LOW Level Output Voltage	4.5		0	0.1		0.1		I _{OL} = 20 μA	
		4.5		0.10	0.26		0.33	V	$I_{OL} = 2 \text{ mA}$	
									$V_{IN} = V_{IH}$	
I _{IN}	Input Leakage Current	5.5			±0.1		±1.0	μΑ	$0 \le V_{IN} \le 5.5V$	
I _{CC}	Quiescent Supply Current	5.5			1.0		10.0	μΑ	$V_{IN} = V_{CC}$ or GND	
ICCT	I _{CC} per Input	5.5			2.0		2.9	mA	One input V _{IN} = 0.5V or 2.4V,	
									other input V _{CC} or GND	

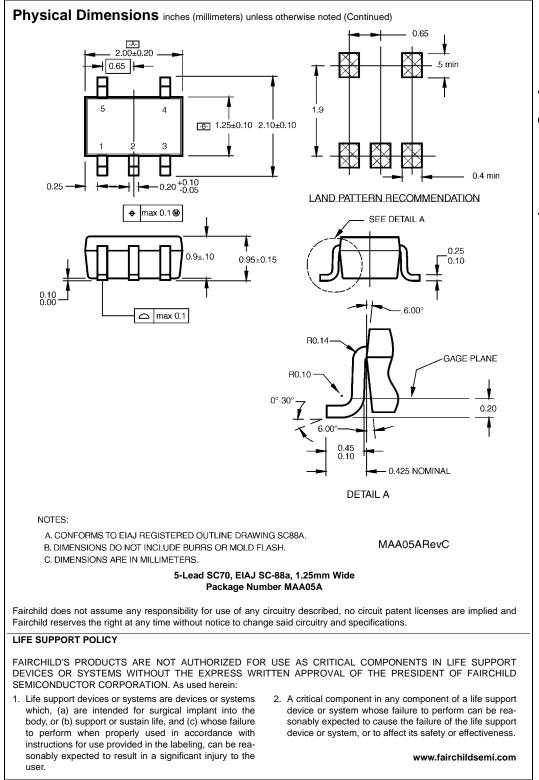
Symbol	Parameter	V _{CC}	T _A = +25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Fig. No.
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	FIG. NO.
t _{PLH} ,	Propagation Delay	5.0		3.4	12				$C_L = 15 \text{ pF}$	Figures
t _{PHL}				6.3	17					1, 3
		4.5		6.0	16		20	ns	$C_L = 50 \text{ pF}$	
				11.5	27		31	ns		
		5.5		4.1	14		18			
		-		11.2	26		30			
t _{TLH} ,	Output Transition Time	5.0		4	10			ns	$C_L = 15 \text{ pF}$	Figures
t _{THL}		4.5		11	25		31	ns	$C_L = 50 \text{ pF}$	1, 3
		5.5		10	21		26	1		
CIN	Input Capacitance	Open		2	10			pF		
CPD	Power Dissipation Capacitance	5.0		6				pF	(Note 3)	Figure 2

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current. Current consumption (ICCD) at no output loading and operating at 50% duty cycle. (See Figure 2). CPD is related to ICCD dynamic operating current by the expression: ICCD = $(C_{PD})(V_{CC})(f_{N}) + (I_{CCstatic})$.

AC Loading and Waveforms


FIGURE 3. AC Waveforms


www.fairchildsemi.com

3

NC7ST00 TinyLogic™ HST 2-Input NAND Gate

7

www.fairchildsemi.com