RAIL TO RAIL INPUT/OUTPUT 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE

■ OPERATING FROM $\mathrm{V}_{\mathrm{cc}}=\mathbf{2 . 2 V}$ to 5.5 V
■RAIL TO RAIL INPUT/OUTPUT
■1W OUTPUT POWER @ Vcc=5V, THD=1\%, $\mathrm{f}=1 \mathrm{kHz}$, with 8Ω Load
■ULTRA LOW CONSUMPTION IN STANDBY MODE (10nA)
■ 75dB PSRR @ 217Hz @ 5 \& 2.6V
■ ULTRA LOW POP \& CLICK
■ULTRA LOW DISTORTION (0.05\%)

- UNITY GAIN STABLE

■ 8 X170 $\mu \mathrm{m}$ BUMPS FLIP CHIP PACKAGE

DESCRIPTION

The TS4872 is an Audio Power Amplifier capable of delivering 1W of continuous RMS Ouput Power into 8Ω load @ 5 V .
This Audio Amplifier is exhibiting 0.1% distortion level (THD) from a 5 V supply for a Pout $=250 \mathrm{~mW}$ RMS. An external standby mode control reduces the supply current to less than 10 nA . An internal shutdown protection is provided.
The TS4872 has been designed for high quality audio applications such as mobile phones and to minimize the number of external components.

The unity-gain stable amplifier can be configured by external gain setting resistors.

APPLICATIONS

■ Mobile Phones (Cellular / Cordless)

- PDAs
- Laptop/Notebook computers

■ Portable Audio Devices

ORDER CODE

Part Number	Temperature Range	Package	Marking
TS4872IJT	$-40,+85^{\circ} \mathrm{C}$	\bullet	YW4872

[^0]PIN CONNECTIONS (Top View)

TYPICAL APPLICATION SCHEMATIC

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage ${ }^{1)}$	6	V
$\mathrm{~V}_{\mathrm{i}}$	Input Voltage ${ }^{2)}$	G_{ND} to V_{CC}	V
$\mathrm{T}_{\text {oper }}$	Operating Free Air Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum Junction Temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {thja }}$	Flip Chip Thermal Resistance Junction to Ambient ${ }^{3)}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Pd	Power Dissipation	Internally Limited	
ESD	Human Body Model	2	kV
ESD	Machine Model	200	V
Latch-up	Latch-up Immunity	Class A	
	Lead Temperature (soldering, 10sec)	250	${ }^{\circ} \mathrm{C}$

1. All voltages values are measured with respect to the ground pin.
2. The magnitude of input signal must never exceed $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V} / \mathrm{G}_{\mathrm{ND}}-0.3 \mathrm{~V}$
3. Device is protected in case of over temperature by a thermal shutdown active @ $150^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	2.2 to 5.5	V
$\mathrm{~V}_{\text {ICM }}$	Common Mode Input Voltage Range V_{CC} from 2.6V to 5V $\mathrm{V}_{\mathrm{CC}}<2.6 \mathrm{~V}$	$\mathrm{G}_{\text {ND }}$ to V_{CC} $\mathrm{V}_{\mathrm{CC}} / 2$	
$\mathrm{~V}_{\mathrm{STB}}$	Standby Voltage Input : Device ON Device OFF	$\mathrm{G}_{\mathrm{ND}} \leq \mathrm{V}_{\text {STB }} \leq 0.5 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}-0.5 \mathrm{~V} \leq \mathrm{V}_{\text {STB }} \leq \mathrm{V}_{\mathrm{CC}}$	V
RL	Load Resistor	$4-32$	Ω
$\mathrm{R}_{\text {thja }}$	Flip Chip Thermal Resistance Junction to Ambient ${ }^{1)}$	95	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^1]
ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{GND}=\mathbf{0 V}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$I_{\text {cc }}$	Supply Current No input signal, no load		6	8	mA
$\mathrm{I}_{\text {Standby }}$	Standby Current ${ }^{1)}$ No input signal, Vstdby $=\mathrm{Vcc}, \mathrm{RL}=8 \Omega$		10	1000	nA
Voo	Output Offset Voltage No input signal, RL=8		5	20	mV
Po	Output Power $\mathrm{THD}=1 \% \mathrm{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}=8 \Omega$		1		W
THD + N	Total Harmonic Distortion + Noise $\mathrm{Po}=250 \mathrm{~mW} \mathrm{rms}, \mathrm{Gv}=2,20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}, \mathrm{RL}=8 \Omega$		0.1		\%
PSRR	Power Supply Rejection Ratio ${ }^{2)}$ $\mathrm{f}=217 \mathrm{~Hz}, \mathrm{RL}=8 \Omega$, RFeed $=22 \mathrm{~K} \Omega$, Vripple $=200 \mathrm{mV}$ rms		75		dB
Φ_{M}	Phase Margin at Unity Gain $R_{L}=8 \Omega, C_{L}=500 \mathrm{pF}$		70		Degrees
GM	Gain Margin $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		20		dB
GBP	Gain Bandwidth Product $\mathrm{R}_{\mathrm{L}}=8 \Omega$		2		MHz

1. Standby mode is actived when Vstdby is tied to Vcc
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @f=217Hz
$\mathrm{V}_{\mathrm{CC}}=+\mathbf{3 . 3 V}, \mathrm{GND}=\mathbf{0 V}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) ${ }^{3)}$

Symbol	Parameter	Min.	Typ.	Max.	Unit
$I_{\text {cc }}$	Supply Current No input signal, no load		5.5	8	mA
$\mathrm{I}_{\text {Standby }}$	Standby Current ${ }^{1)}$ No input signal, Vstdby $=\mathrm{Vcc}, \mathrm{RL}=8 \Omega$		10	1000	nA
Voo	Output Offset Voltage No input signal, RL $=8 \Omega$		5	20	mV
Po	Output Power $\mathrm{THD}=1 \% \mathrm{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}=8 \Omega$		450		mW
THD + N	Total Harmonic Distortion + Noise Po $=250 \mathrm{~mW} \mathrm{rms}, \mathrm{Gv}=2,20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}, \mathrm{RL}=8 \Omega$		0.1		\%
PSRR	Power Supply Rejection Ratio ${ }^{2)}$ $\mathrm{f}=217 \mathrm{~Hz}, R \mathrm{~L}=8 \Omega$, RFeed $=22 \mathrm{~K} \Omega \mathrm{~s}$, Vripple $=100 \mathrm{mV} \mathrm{rms}$		68		dB
Φ_{M}	Phase Margin at Unity Gain $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		70		Degrees
GM	Gain Margin $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		20		dB
GBP	Gain Bandwidth Product $\mathrm{R}_{\mathrm{L}}=8 \Omega$		2		MHz

[^2]
ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{GND}=\mathbf{0 V}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
I_{cc}	Supply Current No input signal, no load		5.5	8	mA
$\mathrm{I}_{\text {StandBy }}$	Standby Current ${ }^{1)}$ No input signal, Vstdby $=\mathrm{Vcc}, \mathrm{RL}=8 \Omega$		10	1000	nA
Voo	Output Offset Voltage No input signal, $\mathrm{RL}=8 \Omega$		5	20	mV
Po	Output Power $\mathrm{THD}=1 \% \mathrm{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}=8 \Omega$		260		mW
THD + N	Total Harmonic Distortion + Noise $\mathrm{Po}=200 \mathrm{~mW} \mathrm{rms}, \mathrm{Gv}=2,20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}, \mathrm{RL}=8 \Omega$		0.1		\%
PSRR	Power Supply Rejection Ratio ${ }^{2)}$ $\mathrm{f}=217 \mathrm{~Hz}, \mathrm{RL}=8 \Omega, \text { RFeed }=22 \mathrm{~K} \Omega \text {, Vripple }=200 \mathrm{mV} \mathrm{rms}$		75		dB
Φ_{M}	Phase Margin at Unity Gain $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		70		Degrees
GM	Gain Margin $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		20		dB
GBP	Gain Bandwidth Product $\mathrm{R}_{\mathrm{L}}=8 \Omega$		2		MHz

1. Standby mode is actived when Vstdby is tied to Vcc
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ $f=217 \mathrm{~Hz}$
$\mathrm{V}_{\mathrm{CC}}=\mathbf{2 . 2 V}, G N D=\mathbf{0 V}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
I_{CC}	Supply Current No input signal, no load		4.5		mA
$\mathrm{I}_{\text {Standby }}$	Standby Current ${ }^{1)}$ No input signal, Vstdby $=\mathrm{Vcc}, \mathrm{RL}=8 \Omega$		10		nA
Voo	Output Offset Voltage No input signal, $\mathrm{RL}=8 \Omega$		2		mV
Po	Output Power $\mathrm{THD}=1 \% \mathrm{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}=8 \Omega$		180		mW
THD + N	Total Harmonic Distortion + Noise $\mathrm{Po}=200 \mathrm{~mW}$ rms, $\mathrm{Gv}=2,20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}, \mathrm{RL}=8 \Omega$		0.1		\%
PSRR	Power Supply Rejection Ratio ${ }^{2)}$ $\mathrm{f}=217 \mathrm{~Hz}, \mathrm{RL}=8 \Omega, \text { RFeed }=22 \mathrm{~K} \Omega \text {, Vripple }=100 \mathrm{mVpp}$		75		dB
Φ_{M}	Phase Margin at Unity Gain $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		70		Degrees
GM	Gain Margin $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		20		dB
GBP	Gain Bandwidth Product $\mathrm{R}_{\mathrm{L}}=8 \Omega$		2		MHz

1. Standby mode is actived when Vstdby is tied to Vcc
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to $\mathrm{Vcc} @ \mathrm{f}=217 \mathrm{~Hz}$

Components	Functional Description
Rin	Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with $\mathrm{Cin}(\mathrm{fc}=1 /(2 \times \mathrm{Pi} \times$ Rin \times Cin $))$
Cin	Input coupling capacitor which blocks the DC voltage at the amplifier input terminal
Rfeed	Feed back resistor which sets the closed loop gain in conjunction with Rin
Cs	Supply Bypass capacitor which provides power supply filtering
Cb	Bypass pin capacitor which provides half supply filtering
Cfeed	Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency $1 /(2 \times$ Pi \times Rfeed \times Cfeed $))$
Rstb	Pull-up resistor which fixes the right supply level on the standby pin
Gv	Closed loop gain in BTL configuration $=2 \times$ (Rfeed / Rin)

REMARKS

1. All measurements, except PSRR measurements, are made with a supply bypass capacitor $\mathrm{Cs}=100 \mu \mathrm{~F}$. 2. External resistors are not needed for having better stability when supply @ Vcc down to 3 V . By the way, the quiescent current remains the same.
2. The standby response time is about $1 \mu \mathrm{~s}$.

Fig. 1 : Open Loop Frequency Response

Fig. 3 : Open Loop Frequency Response

Fig. 5 : Open Loop Frequency Response

Fig. 2 : Open Loop Frequency Response

Fig. 4 : Open Loop Frequency Response

Fig. 6 : Open Loop Frequency Response

Fig. 7 : Open Loop Frequency Response

Fig. 8 : Open Loop Frequency Response

Fig. 9 : Open Loop Frequency Response

Fig. 10 : Power Supply Rejection Ratio (PSRR) vs Power Supply

Fig. 12 : Power Supply Rejection Ratio (PSRR) vs Bypass Capacitor

Fig. 14 : Power Supply Rejection Ratio (PSRR) vs Feedback Resistor

Fig. 11 : Power Supply Rejection Ratio (PSRR) vs Feedback Capacitor

Fig. 13 : Power Supply Rejection Ratio (PSRR) vs Input Capacitor

Fig. 15 : Pout @ THD + N = 1\% vs Supply Voltage vs RL

Fig. 17 : Power Dissipation vs Pout

Fig. 19 : Power Dissipation vs Pout

Fig. 16 : Pout @ THD + N = 10\% vs Supply Voltage vs RL

Fig. 18 : Power Dissipation vs Pout

Fig. 20 : Power Derating Curves

Fig. 21 : THD + N vs Output Power

Fig. 23 : THD + N vs Output Power

Fig. 25 : THD + N vs Output Power

Fig. 22 : THD + N vs Output Power

Fig. 24 : THD + N vs Output Power

Fig. 26 : THD + N vs Output Power

Fig. 27 : THD + N vs Output Power

Fig. 29 : THD + N vs Output Power

Fig. 31 : THD + N vs Output Power

Fig. 28 : THD + N vs Output Power

Fig. 30 : THD + N vs Output Power

Fig. 32 : THD + N vs Output Power

Fig. 33 : THD + N vs Output Power

Fig. 35 : THD + N vs Output Power

Fig. 37 : THD + N vs Output Power

Fig. 34 : THD + N vs Output Power

Fig. 36 : THD + N vs Output Power

Fig. 38 : THD + N vs Output Power

Fig. 39 : THD + N vs Output Power

Fig. 41 : THD + N vs Output Power

Fig. 43 : THD + N vs Output Power

Fig. 40 : THD + N vs Output Power

Fig. 42 : THD + N vs Output Power

Fig. 44 : THD + N vs Output Power

Fig. 45 : THD + N vs Frequency

Fig. 47 : THD + N vs Frequency

Fig. 49 : THD + N vs Frequency

Fig. 46 : THD + N vs Frequency

Fig. 48 : THD + N vs Frequency

Fig. 50 : THD + N vs Frequency

Fig. 51 : THD + N vs Frequency

Fig. 53 : THD + N vs Frequency

Fig. 55 : THD + N vs Frequency

Fig. 52 : THD + N vs Frequency

Fig. 54 : THD + N vs Frequency

Fig. 56 : THD + N vs Frequency

Fig. 57 : THD + N vs Frequency

Fig. 59 : THD + N vs Frequency

Fig. 61 : THD + N vs Frequency

Fig. 58 : THD + N vs Frequency

Fig. 60 : THD + N vs Frequency

Fig. 62 : THD + N vs Frequency

Fig. 63 : THD + N vs Frequency

Fig. 65 : THD + N vs Frequency

Fig. 67 : THD + N vs Frequency

Fig. 64 : THD + N vs Frequency

Fig. 66 : THD + N vs Frequency

Fig. 68 : THD + N vs Frequency

Fig. 69 : Signal to Noise Ratio vs Power Supply with Unweighted Filter ($\mathbf{2 0 H z}$ to 20kHz)

Fig. 71 : Signal to Noise Ratio vs Power Supply with Weighted Filter type A

Fig. 73 : Frequency Response Gain vs Cin, \& Cfeed

Fig. 70 : Signal to Noise Ratio Vs Power Supply with Unweighted Filter ($\mathbf{2 0 H z}$ to $\mathbf{2 0 k H z}$)

Fig. 72 : Signal to Noise Ratio vs Power Supply with Weighted Filter Type A

Fig. 74 : Current Consumption vs Power Supply Voltage

Fig. 75 : Current Consumption vs Standby Voltage @ Vcc=5V

Fig. 77 : Current Consumption vs Standby Voltage @ Vcc = 2.6 V

Fig. 79 : Clipping Voltage vs Power Supply Voltage and Load Resistor

APPLICATION INFORMATION
Fig. 80 : Demoboard Schematic

Fig. 81 : Flip Chip Demoboard Components Side

Fig. 82 : Flip Chip Demoboard Top Layer

Fig. 83 : Flip Chip Demoboard Bottom Layer

BTL Configuration Principle

The TS4872 is a monolithic power amplifier with a BTL output type. BTL (Bridge Tied Load) means that each end of the load is connected to two single ended output amplifiers. Thus, we have :

Single ended output $1=$ Vout $=$ Vout (V)
Single ended output $2=\operatorname{Vout} 2=-\operatorname{Vout}(\mathrm{V})$
And Vout1 - Vout2 = 2Vout (V)
The output power is :

$$
\text { Pout }=\frac{\left(2 \text { Vout }_{\text {RMS }}\right)^{2}}{R_{L}}(W)
$$

For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single ended configuration.

■ Gain In Typical Application Schematic (cf. page 1)

In flat region (no effect of Cin), the output voltage of the first stage is :

$$
\text { Vout1 }=- \text { Vin } \frac{\text { Rfeed }}{\text { Rin }}(V)
$$

For the second stage : Vout2 = -Vout1 (V)

The differential output voltage is

$$
\text { Vout2 }- \text { Vout1 }=2 \text { Vin } \frac{\text { Reeed }}{\text { Rin }}(\mathrm{V})
$$

The differential gain named gain (Gv) for more convenient usage is :

$$
\text { Gv }=\frac{\text { Vout2 }- \text { Vout1 }}{\text { Vin }}=2 \frac{\text { Rfeed }}{\text { Rin }}
$$

Remark : Vout2 is in phase with Vin and Vout1 is 180 phased with Vin. It means that the positive terminal of the loudspeaker should be connected to Vout2 and the negative to Vout1.

Low and high frequency response

In low frequency region, the effect of Cin starts. Cin with Rin forms a high pass filter with a -3 dB cut off frequency

$$
\mathrm{FCL}=\frac{1}{2 \pi \operatorname{Rin} \mathrm{Cin}}(\mathrm{~Hz})
$$

In high frequency region, you can limit the bandwidth by adding a capacitor (Cfeed) in parallel on Reeed. Its form a low pass filter with a -3dB cut off frequency

$$
\mathrm{FcH}=\frac{1}{2 \pi \text { Rfeed Cfeed }}(\mathrm{Hz})
$$

Power dissipation and efficiency

Hypothesis:

- Voltage and current in the load are sinusoidal (Vout and lout)
- Supply voltage is a pure DC source (Vcc)

Regarding the load we have :

$$
\text { VOUT }=\mathrm{V}_{\text {PEAK }} \sin \omega \mathrm{t}(\mathrm{~V})
$$

and

$$
\text { IOUT }=\frac{\text { Vout }}{R L}(A)
$$

and

$$
\text { POUT }=\frac{\text { VPEAK }^{2}}{2 R L}(\mathrm{~W})
$$

Then, the average current delivered by the supply voltage is:

$$
\mathrm{ICC}_{\mathrm{AVG}}=2 \frac{\mathrm{VPEAK}^{2}}{\pi R \mathrm{~L}}(\mathrm{~A})
$$

Then, the power dissipated by the amplifier is Pdiss = Psupply - Pout (W)

$$
\text { Pdiss }=\frac{2 \sqrt{2 V c c}}{\pi \sqrt{R L}} \sqrt{\text { PoUT }}-\text { Pout }(W)
$$

and the maximum value is obtained when:

$$
\frac{\partial \mathrm{Pdiss}}{\partial \mathrm{PoUT}}=0
$$

and its value is:

$$
\text { Pdissmax }=\frac{2 \mathrm{Vcc}^{2}}{\pi^{2} \mathrm{R}_{\mathrm{L}}}(\mathrm{~W})
$$

Remark: This maximum value is only depending on power supply voltage and load values.

The efficiency is the ratio between the output power and the power supply

$$
\eta=\frac{\text { Pout }}{\text { Psupply }}=\frac{\pi \mathrm{V} \text { PEAK }}{4 \mathrm{Vcc}}
$$

The maximum theoretical value is reached when Vpeak = Vcc, so

$$
\frac{\pi}{4}=78.5 \%
$$

Decoupling of the circuit

Two capacitors are needed to bypass properly the TS4872. A power supply bypass capacitor Cs and a bias voltage bypass capacitor Cb .

Cs has especially an influence on the THD+N in high frequency (above 7 kHz) and indirectly on the power supply disturbances.
With $100 \mu \mathrm{~F}$, you can expect similar $\mathrm{THD}+\mathrm{N}$ performances like shown in the datasheet.

If Cs is lower than $100 \mu \mathrm{~F}$, in high frequency increases, THD+N and disturbances on the power supply rail are less filtered.
To the contrary, if Cs is higher than $100 \mu \mathrm{~F}$, those disturbances on the power supply rail are more
filtered.
$\mathbf{C b}$ has an influence on THD+N in lower frequency, but its function is critical on the final result of PSRR with input grounded in lower frequency.

If Cb is lower than $1 \mu \mathrm{~F}, \mathrm{THD}+\mathrm{N}$ increase in lower frequency (see THD+N vs frequency curves) and the PSRR worsens up
If Cb is higher than $1 \mu \mathrm{~F}$, the benefit on $\mathrm{THD}+\mathrm{N}$ in lower frequency is small but the benefit on PSRR is substantial (see PSRR vs. Cb curve : fig.12)

Note that Cin has a non-negligible effect on PSRR in lower frequency. Lower is its value, higher is the PSRR (see fig. 13).

\square Pop and Click performance

Pop and Click performance is intimately linked with the size of the input capacitor Cin and the bias voltage bypass capacitor Cb .

Size of Cin is due to the lower cut off frequency and PSRR value request and size of Cb is due to THD $+N$ and PSRR request always in lower frequency.

Moreover, Cb determines the speed at which the amplifier turns ON. The slower the speed is, the softer turns ON noise.

The charge time of Cb is directly proportional to the internal generator resistance $50 \mathrm{k} \Omega$.
Then, the charging time constant for Cb is $\tau \mathrm{b}=50 \mathrm{k} \Omega \mathrm{xCb}$ (s)
As Cb is directly connected to the non-inverting input (pin 3 \& 7) and if we want to minimize, in amplitude and duration, the output spike on Vout1 (pin 8), Cin must be charged faster than Cb. The charge time constant of Cin is
τ in $=($ Rin + Rfeed $) \times$ Cin (s)
Thus we have the relation

```
\tauin}<<\tau\mp@code{b
```

The respect of this relation permits to minimize the pop and click noise.

Remark: Minimize Cin and Cb has a benefit on pop and click phenomena but also on cost and size of the application.

Example : your target for the -3dB cut off frequency is 100 Hz . With Rin=Rfeed=22 k Ω, Cin=72nF (in fact 82nF or 100 nF).

With $\mathrm{Cb}=1 \mu \mathrm{~F}$, if you choose the one of the latest two values of Cin, the pop and click phenomena at power supply ON or standby function ON/OFF will be very small
$50 \mathrm{k} \Omega \times 1 \mu \mathrm{~F} \gg 44 \mathrm{k} \Omega \times 100 \mathrm{nF}$ ($50 \mathrm{~ms} \gg 4.4 \mathrm{~ms}$).
Increase Cin value increases the pop and click phenomena to an unpleasant sound at power supply ON and standby function ON/OFF.

Why Cs is not important in pop and click consideration?

Hypothesis:

- Cs $=100 \mu \mathrm{~F}$
- Supply voltage $=5 \mathrm{~V}$
- Supply voltage internal resistor $=0.1 \Omega$
- Supply current of the amplifier Icc $=6 \mathrm{~mA}$

At power ON of the supply, the supply capacitor is charged through the internal power supply resistor. So, to reach 5 V you need about five to ten times the charging time constant of Cs ($\tau \mathrm{s}=$ $0.1 \mathrm{xCs}(\mathrm{s})$).
Then, this time equal $50 \mu \mathrm{~s}$ to $100 \mu \mathrm{~s} \ll \tau$ b in the majority of application.

At power OFF of the supply, Cs is discharged by a constant current Icc. The discharge time from 5 V to 0 V of Cs is

$$
\text { tDischCs }=\frac{5 C s}{I c c}=83 \mathrm{~ms}
$$

Now, we must consider the discharge time of Cb . At power OFF or standby ON, Cb is discharged by a $100 \mathrm{k} \Omega$ resistor. So the discharge time is about $\tau \mathrm{b}_{\text {Disch }} \approx 3 \times \mathrm{Cbx} 100 \mathrm{k} \Omega$ (s).
In the majority of application, $\mathrm{Cb}=1 \mu \mathrm{~F}$, then $\tau \mathrm{b}_{\text {Disch }} \approx 300 \mathrm{~ms} \gg \mathrm{t}_{\text {dischCs }}$.

■ Power amplifier design examples

Given :
-Load impedance : 8Ω

- Output power @ 1\% THD+N : 0.5W
- Input impedance : $10 \mathrm{k} \Omega \mathrm{min}$.
- Input voltage peak to peak: 1 Vpp
- Bandwidth frequency : 20 Hz to $20 \mathrm{kHz}(0,-3 \mathrm{~dB})$
- Ambient temperature $\max =50^{\circ} \mathrm{C}$

First of all, we must calculate the minimum power supply voltage to obtain 0.5 W into 8Ω. With curves in fig. 15 , we can read 3.5 V .
Thus, the power supply voltage value min. will be 3.5 V .

Following the maximum power dissipation equation

$$
\text { Pdissmax }=\frac{2 \mathrm{Vcc}^{2}}{\pi^{2} \mathrm{R}_{\mathrm{L}}}(\mathrm{~W})
$$

with 3.5 V we have $\mathrm{Pdissmax}=0.31 \mathrm{~W}$.
Referring to power derating curves (fig. 20), with 0.31 W the maximum ambient temperature will be $100^{\circ} \mathrm{C}$. This last value could be higher if you follow the example layout shown on the demoboard (better dissipation).

The gain of the amplifier in flat region will be

$$
G V=\frac{\text { Voutpp }}{\text { VINPP }}=\frac{2 \sqrt{2 R L \text { POUT }}}{V_{\text {INPP }}}=5.65
$$

We have Rin $>10 \mathrm{k} \Omega$. Let's take Rin $=10 \mathrm{k} \Omega$, then Rfeed $=28.25 \mathrm{k} \Omega$. We could use for Rfeed $=30 \mathrm{k} \Omega$ in normalized value and the gain will be $\mathrm{Gv}=6$.

In lower frequency we want 20 Hz (-3dB cut off frequency). Then

$$
\mathrm{CIN}^{\prime}=\frac{1}{2 \pi \text { RinFCL }}=795 \mathrm{nF}
$$

So, we could use for Cin a $1 \mu \mathrm{~F}$ capacitor value that gives 16 Hz .

In Higher frequency we want 20kHz (-3dB cut off frequency). The Gain Bandwidth Product of the TS4872 is 2 MHz typical and doesn't change when the amplifier delivers power into the load.
The first amplifier has a gain of

$$
\frac{\text { Rfeed }}{\text { Rin }}=3
$$

and the theoretical value of the -3 dB cut-off higher frequency is $2 \mathrm{MHz} / 3=660 \mathrm{kHz}$.
We can keep this value or limit the bandwidth by adding a capacitor Cfeed, in parallel on Rfeed.

Then

$$
\text { CFEED }=\frac{1}{2 \pi \text { RFEEDFCH }}=265 \mathrm{pF}
$$

So, we could use for Cfeed a 220pF capacitor value that gives 24 kHz .

Now, we can calculate the value of Cb with the formula $\tau \mathrm{b}=50 \mathrm{k} \Omega \mathrm{xCb} \gg$ tin $=($ Rin + Rfeed $) \times$ Cin which permits to reduce the pop and click effects. Then $\mathrm{Cb} \gg 0.8 \mu \mathrm{~F}$.
We can choose for Cb a normalized value of $2.2 \mu \mathrm{~F}$ that gives good results in THD +N and PSRR.

In the following tables, you could find three another examples with values required for the demoboard.

Remark : components with (*) marking are optional.

Application $\mathrm{n}^{\circ} 1: 20 \mathrm{~Hz}$ to 20 kHz bandwidth and 6 dB gain BTL power amplifier.

Components :

Designator	Part Type
R1	$22 \mathrm{k} / 0.125 \mathrm{~W}$
R4	$22 \mathrm{k} / 0.125 \mathrm{~W}$
R6	Short Cicuit
R7	$330 \mathrm{k} / 0.125 \mathrm{~W}$
C5	470 nF
C6	$100 \mu \mathrm{~F}$
C7	100 nF
C9	Short Circuit
C10	Short Circuit
C12	$1 \mu \mathrm{~F}$ S1, S2, S6, S7 10.16 mm pitch
S8	2 pts connector 2.54 mm pitch
J1	SMB plug
U1	TS4872IJ

Application $\mathrm{n}^{\circ} 2$: 20 Hz to 20 kHz bandwidth and 20 dB gain BTL power amplifier.

Components :

Designator	Part Type
R1	$110 \mathrm{k} / 0.125 \mathrm{~W}$
R4	$22 \mathrm{k} / 0.125 \mathrm{~W}$
R6	Short Cicuit
R7	$330 \mathrm{k} / 0.125 \mathrm{~W}$
C5	470 nF
C6	$100 \mu \mathrm{~F}$
C7	100 nF
C9	Short Circuit
C10	$1 \mu \mathrm{Fhort}$ Circuit
C12	2 mm insulated Plug $10.16 m m ~ p i t c h ~$
S1, S2, S6, S7	2 pts connector 2.54mm pitch
S8	SMB Plug
J1	TS4872IJ
U1	

Application $\mathrm{n}^{\circ} 3: 50 \mathrm{~Hz}$ to 10 kHz bandwidth and 10 dB gain BTL power amplifier.

Components :

Designator	Part Type
R1	$33 \mathrm{k} / 0.125 \mathrm{~W}$
R2	Short Circuit
R4	$22 \mathrm{k} / 0.125 \mathrm{~W}$
R6	Short Cicuit
R7	$330 \mathrm{k} / 0.125 \mathrm{~W}$
C2	470 pF
C5	150 nF
C6	$100 \mu \mathrm{~F}$
C7	100 nF
C9	Short Circuit

Designator	Part Type
C10	Short Circuit
C12	$1 \mu \mathrm{~F}$
S1, S2, S6, S7	2 mm insulated Plug 10.16 mm pitch
S8	2 pts connector 2.54 mm pitch
J1	SMB Plug
U1	TS4872IJ

Application $\mathrm{n}^{\circ} 4$: Differential inputs BTL power amplifier.

In this configuration, we need to place these components : R1, R4, R5, R6, R7, C4, C5, C12.

We have also : R4 = R5, R1 = R6, C4 = C5.
The gain of the amplifier is :

$$
\text { GvDIFF } \left.=2 \frac{\mathrm{R} 1}{\mathrm{R} 4} \text { (Pos. Input }- \text { Neg.Input }\right)
$$

For a 20 Hz to 20 kHz bandwidth and 6dB gain BTL power amplifier you could follow the bill of material below.

Components :

Designator	Part Type
R1	$22 \mathrm{k} / 0.125 \mathrm{~W}$
R4	$22 \mathrm{k} / 0.125 \mathrm{~W}$
R5	$22 \mathrm{k} / 0.125 \mathrm{~W}$
R6	$22 \mathrm{k} / 0.125 \mathrm{~W}$
R7	$330 \mathrm{k} / 0.125 \mathrm{~W}$
C4	470 nF
C5	470 nF

Designator	Part Type
C6	$100 \mu \mathrm{~F}$
C7	100 nF
C9 Short Circuit	
C10	Short Circuit
C12	$1 \mu \mathrm{~F}$
S1, S2, S6, S7	2 mm insulated Plug 10.16 mm pitch
S8	2 pts connector 2.54 mm pitch
J1, J3	SMB Plug
U1	TS4872IJ

Note on how to use the PSRR curves (page 8)

We have finished a design and we have chosen the components :

■ Rin=Rfeed=22k Ω

- Cin=100nF
- Cb= $1 \mu \mathrm{~F}$

Now, on fig. 13, we can see the PSRR (input grounded) vs frequency curves. At 217 Hz we have a PSRR value of -36 dB .
In reality we want a value about -70 dB . So, we need a gain of 34 dB !
Now, on fig. 12 we can see the effect of Cb on the PSRR (input grounded) vs. frequency. With $\mathrm{Cb}=100 \mu \mathrm{~F}$, we can reach the -70 dB value.
The process to obtain the final curve $(\mathrm{Cb}=100 \mu \mathrm{~F}$, $\mathrm{Cin}=100 \mathrm{nF}$, Rin=Rfeed=22k Ω) is a simple transfer point by point on each frequency of the curve on fig. 13 to the curve on fig. 12.
The measurement results is shown on figure 84.

Fig. 84 : PSRR changes with $\mathbf{C b}$

Note on PSRR measurement

What is the PSRR ?
The PSRR is the Power Supply Rejection Ratio. It's a kind of SVR in a determined frequency range. The PSRR of a device, is the ratio between a power supply disturbance and the result on the output.

We can say that the PSRR is the ability of a device to minimize the impact of power supply disturbances to the output.

How we measure the PSRR ?
For PSRR measurement schematic see figure 85

Fig. 85 : PSRR measurement schematic

- Principle of operation

- We fixed the DC voltage supply (Vcc)
- We fixed the AC sinusoidal ripple voltage
(Vripple)
- No bypass capacitor Cs is used

The PSRR value for each frequency is :

$$
\operatorname{PSRR}(\mathrm{dB})=20 \times \log _{10}\left\lceil\frac{\mathrm{Rms}\left(\mathrm{~V}_{\text {ripple }}\right)}{\mathrm{Rms}\left(\mathrm{Vs}_{+}-\mathrm{Vs}_{-}\right)}\right\rceil
$$

Remark: The measure of the Rms voltage is not a Rms selective measure but a full range (2 Hz to 125 kHz) Rms measure. It means that we measure the effective Rms signal + the noise.

TOP VIEW OF THE DAISY CHAIN MECHANICAL DATA (all drawings dimensions are in millimeters)

REMARKS

Daisy chain sample is featuring pins connection two by two. The schematic above is illustrating the way connecting pins each other. This sample is used for testing continuity on board. PCB needs to be designed on the opposite way, where pin connections are not done on daisy chain samples. By that way, just connecting an Ohmeter between pin 8 and pin 1, the soldering process continuity can be tested.

ORDER CODE

Part Number	Temperature Range	Package	Marking
		\mathbf{J}	
TSDC4872IJT	$-40,+85^{\circ} \mathrm{C}$	\bullet	DC01

TAPE \& REEL SPECIFICATION (top view)

PIN OUT (top view)

Balls are underneath

MARKING (top view)

Y: Year

- W: Week with two digits
- Example : 1254872

PACKAGE MECHANICAL DATA

FLIP CHIP - 8 BUMPS

```
Die size : (3.02mm }\pm10%)\times(1.52mm \pm10%
Die height (including bumps): 540\mum }\pm50\mu\textrm{m
\square Bump height: 140\mum \pm15\mum (i.e. bump diameter of 185 \mum \pm15 \mum
 Silicon thickness : 400\mum }\pm25\mu\textrm{m
- Pitch: }500\mu\textrm{m}\pm10\mu\textrm{m}\mathrm{ and }750\mu\textrm{m}\pm10\mu\textrm{m
```


Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
© http://www.st.com

[^0]: $\mathbf{J}=$ Flip Chip Package - only available in Tape \& Reel (JT)

[^1]: 1. With Heat Sink Surface $=125 \mathrm{~mm}^{2}$
[^2]: 1. Standby mode is actived when Vstdby is tied to Vcc
 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @f=217Hz

 3 All electrical values are made by correlation between 2.6 v and 5 v measurements

